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Abstract—The increasing of heterogeneous data in the 

building domain brings a huge challenge to data integration. 

With the combination of ontology and data model, a 

building energy domain common data model is developed 

and provides a uniform data schema to guide the data 

integration process. Additionally, a cloud data pipeline is 

proposed and developed, which includes the common data 

model, data harmonization, data storage and data querying. 

The requirement and possible use cases for the big data 

pipeline for building energy management are described. 

This work provides guidelines for big data management in 

building energy domain. Furthermore, our data pipeline is 

evaluated with 11 large pilots and shows a significant 

improvement in the data governance process.   

 

Keywords—big data, building Life-Cycle, data model, data 

pipeline, ontology 

 

I. INTRODUCTION 

The explosive increase of IoT devices produces huge 

heterogeneous data in the building domain. According to 

(Jiang et al., 2016), the increase of the volume in big data 

also raises the problem in data storage, querying and 

processing. Traditional approaches to dealing with data 

heterogeneity have depended on the use of data models. 

The problem of data model has been pointed out in 

reaching an agreement among a community of users, as 

well as the data models' lack of flexibility in adapting to 

changes and the loss of information after exporting and 

importing data through apps. The authors of (Noura et al., 

2019) point out that the harmonization effort of the huge 

heterogeneous data is significantly decreased with 

ontology. Ontology is an explicit specification of a 

conceptualization, which provides a shared vocabulary 

and the relationships among them across the internet. The 

important feature is the information system from closed 

and stand-alone to distributed, loosely coupled systems 

through ontology. A plethora of ontologies for many 
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applications have been produced. However, under the 

condition of big data, ontologies are huge in terms of 

entity and relationships that make the search for the most 

suitable ontology difficult and decrease the reusability 

(Caldarola and Rinaldi, 2016). Furthermore, ontologies 

for building energy management are too general and 

fragmented to be useful in practice, and the current 

ontologies are not flexible enough to include innovative 

sensors, such as a Kindle or an Amazon Echo 

(Bhattacharya et al., 2015). The goal of data model is to 

structure the task-oriented information, while the 

ontology provides the generic representation of data 

(Spyns et al., 2002). Compensating ontology with data 

model, the data model is expanded and provides the 

developer explicit domain knowledge. Therefore, this 

work proposes a common data model, which combines 

the ontology and data model and provides the 

understanding of the members of the community and 

helps to decrease ambiguity in communication. Another 

issue in the building energy domain is that there is no 

single ontology, which covers the whole building life-

cycle (Ramesh et al., 2010): Manufacturing Phase, Use 

Phase and Demolition Phase; and considers from 

different perspectives and scales of building: buildings as 

individual elements (building level) to their aggregation 

at various scales (district to national level).   

The main issue with the storage of building energy 

information is that the static and real-time data are kept in 

different places and different formats (e.g., semi-

structured and structured data). The larger the volume of 

data is increased, the larger the possibility of error having 

data misstated with different types and formats 

(Marinakis et al., 2020). Moreover, no data lake or data 

warehouse collects all data related to energy information 

of buildings. This limits the data access and availability 

for energy analysts. With relational and non-relational 

databases that host the data applicable for analysis, it is a 

challenging task to query all the information and data 

with different formats and types. Therefore, the need for 

data querying has emerged. 

The contributions of this paper are: 1. To solve all the 

problems motioned before, this work proposes a big data 
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pipeline for building energy management based on the 

reference architecture in (Pau et al., 2022) that enables 

the flexible handling of building energy big data from 

applications or sources and demonstrate the pipeline with 

data from 11 pilots and explicit implementation. 2. To 

solve the problem of heterogeneous data, this paper 

introduces a new common data model: Building Energy 

Domain Common Data Model, which reuses not only the 

existing ontology (e.g. Brick (Balaji et al., 2018) and 

SAREF (DanieleDaniele et al., 2015)) but also the data 

model (e.g. FIWARE (https://www.fiware.org/ smart-data-

models/) and EPC4EU (Serna-Gonz ́alez, et al., 2021)).  

Additionally, our data model covers the whole building 

life cycle and different perspectives and scales of 

building. 3. The storage of the harmonized information to 

a database technology that supports embedded formats 

and the querying of data relying on different sources is 

implemented. To control the amount of data and manage 

in-memory processes the proposed solution is built upon 

a data warehouse system that receives streams of data 

from applications and sources, store them in a document-

oriented database and enables the querying of stored data 

from the upper layers by using a simple query language 

like SQL. Moreover, an enriched warehouse of 

harmonized building data is structured that receives real-

time and batch data via its streaming & batch 

mechanisms. The harmonization process is enabled via 

the construction of a Common Data Model that polishes 

the incoming data and structures them in a schema-less 

database. The data are stored in different collections that 

are named from the topics that data are queued. A 

querying engine is on top to query and combines the 

stored building information. 

II. CONCEPT 

A. Use Cases and System Requirements 

Big data and associated technologies are gaining 

traction, creating an unprecedented potential to improve 

energy efficiency across the building sector and life cycle, 

as well as better manage energy use and generation at the 

building level. This has aided in the transformation of 

buildings into digitally upgraded edge hubs capable of 

successfully managing and controlling their energy 

generation and consumption while engaging with other 

smart energy components of the future energy system. 

With properly energy data analysis, stakeholders benefit 

with more comprehensive actionable insights, as well as 

improve decision-making. A variety of data analysis 

techniques (including among others optimization, 

forecasting, classification and clustering) can be applied 

to the aforementioned amounts of big data and on top of 

our data pipeline, supporting the design of new data-

driven business models for several beneficiaries, such as 

national and local governments, network operators and 

suppliers, Energy Service Companies (ESCOs), building 

managers and facilitators, construction and renovation 

sector, investors and financiers, policy makers, and 

researchers. 

The use cases, which are possible to build on top of 

our data pipeline, are summarized in four categories. 

1. Performance: analytics for energy performance 

based on the operational stage of buildings aimed at 

monitoring and improving their energy performance. 

Predictive capabilities related to comfort evaluation, 

energy demand, consumption or generation, will be 

complemented by optimization capabilities for the 

management of comfort-aware building energy 

consumption. To conceptualize, all the device data 

models related to building energy are required. SAREF 

and SAREF4BLDG were created for the concept of IoT 

devices especially for building domain, which fulfils the 

requirement of this use case. 

2. Design: the design category is to facilitate the design, 

refurbishment and development of building infrastructure. 

In particular, this use case focuses on building level 

design of retrofitting actions and on district level design 

of networks. 

3. Policy: this use case is to support policymaking and 

policy impact assessment. They will be targeting three 

main elements revolving around policies at different 

scales: Sustainable Energy and Climate Action Plans, 

Energy Performance Certificates (EPC) and impact 

assessment of EU policies for buildings. Therefore, EPC 

and weather data model are included in the Common 

Data Model. The EPC is variant across the whole 

European, which is also considered in our Common Data 

Model.  

4. Fund: this fund use case aims to perform finer-

grained prediction for building comforts by integrating a 

variety of historical data on energy efficiency investments 

with near real-time metered energy consumption, thus 

contributing to better define Energy Performance 

Contract conditions. It is tailored to ESCOs and financing 

institutions. This use case also addresses the 

centralization of building stock data, and the analysis of 

refurbishment actions. 

Therefore, the data Pipeline should fulfil the following 

requirement. First, it should provide a well-defined API 

for data export. Second, the common data model should 

cover the Real-time data generated by IoT technologies 

(e.g. energy consumption and energy production using 

smart meters, sensor-based data); historical data for 

model development and pattern recognition (e.g. old 

weather data, energy costs); Open data from various 

sources (weather, climate, EPCs SECAPs, costs); 

Secondary data not related directly to energy and climate 

(e.g. demographics, economics, cadaster). Thirdly, 

datasets in different formats and sizes are able to be 

imported into the pipeline. Last, the pipeline should 

provide optimal space allocation in the data storage. 

B. Architecture of Cloud Data Pipeline 

The big data lifecycle is defined in four different 

phases in (Hu et al., 2014): data generation, data 

acquisition, data storage, and data analytics. The data 

acquisition phase consists of data collection, data 

transmission and data pre-processing. This paper focuses 

on data acquisition and data storage part of big data 

phases to provide the middleware of big data life-cycle 

especially for building energy domain.   
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The pipeline is structured into five parts in Fig. 1: data 

collection, data prepossessing service, data harmonization, 

storage and querying. The Kafka (Goodhope et al., 2012) 

is an open source streaming processing system, which can 

handle real-time data, commonly at the second or even 

millisecond level. It is distributed and scalable and offers 

high throughput. Therefore, Kafka is used to collect 

datasets from different databases and transport those to 

the data prepossessing service. This data prepossessing 

service focuses mainly on the data cleansing technique to 

determine inaccurate, incomplete, or unreasonable data. 

In (Truong et al., 2020) and (Rekatsinas et al., 2017), 

several methodologies used in data cleansing process are 

listed, which is possible to integrate in this module.  

Afterward, the data harmonization, which is aim to covert 

the data into a unified view, is executed according to the 

common data model. MongoDB database is selected to 

store the harmonized data, which facilitates the storage of 

both structured and unstructured data collections and can 

manage a high volume of data loads. For the 

implementation of the database-agnostic data warehouse, 

which means to query different databases, relational and 

non-relational, by using SQL the PRESTO functionalities. 

PRESTO is a distributed SQL query engine that provides 

interactive workloads by querying many different data 

sources. In this case, PRESTO is configured on top of 

MongoDB, enabling with this way the big data querying 

and analysis of the harmonized building data over a 

memory-based architecture without moving the 

aforementioned datasets to another structured system. 

Additionally, the data-querying layer provides APIs for 

the different services (e.g., energy performance 

monitoring, support policy making and policy impact 

assessment). 

 

Figure 1. Architecture of cloud pipeline. 

C. Building Energy Domain Common Data Model 

To create a building domain common data model, the 

ontology development 101 method (Noy et al., 2001) is 

applied. It is the most highly cited method compared with 

all other ontology development methods and provides a 

clear guideline for the ontology development with the 

most popular and widely used ontology tool Protégé. In 

(Constantin et al., 2017), the ontology development 101 

method is applied to combine building standards and 

power systems digital automation standards into one 

ontology for building energy management and a data 

model is developed afterward. This provides the 

inspiration for how to apply the ontology development 

method to develop Common Data Model and combine 

the data model and ontology together. This ontology 

development method is modified to develop data model 

and enable the functionality of reusing the existing 

ontology and data model, which is summarized as follows: 

• Determine the domain and scope of the data 

model 

• Determine possible reuse of existing ontology and 

data model 

• Enumerate important terms 

• Define the classes and the class hierarchy 

• Define the properties of classes-slots 

• Define the facets of the slots 

• Create instances 

• Convert Ontology to data model 

The first step about the domain and scope has already 

been described in the section on system requirements. 

The existing ontology and data models related to the 

building energy domain are described below. FIWARE 

smart data model provides different data models in 

different smart domains. Each entity contains enriched 

attributes, which provide the user with high coverage of 

the vocabulary. The smart cities and smart energy 

domains data model are especially important in the 

building energy domain. However, FIWARE smart data 

model lacks the hierarchy between smart cities and smart 

energy domains and the class hierarchy in the smart city 

domain. It only provides the definition of the classes and 

the properties and the facets of the slots. Brick ontology 

is a uniform metadata schema for representing buildings 

and contains sensors, subsystems and the relationships 

between them. The limitation of Brick is that the detail of 

each class is missing (e.g., the properties and the facets). 

SAREF is an ontology, which identifies 20 recurring 

concepts from different ontologies in the home and 

buildings domain. Except for the core ontology, there are 

different extensions in some domains, which can provide 

many relevant domain-specific features and the modelers 

with less experience and explicit domain knowledge 

(Pritoni et al., 2021). (Pritoni et al., 2021) points out that 

the represent geometry and functions of spaces and 

control strategies for control devices are not included in 

all the SAREF extensions. EPC4EU data model aims to 

model the Energy Performance Certificate (EPC) datasets 

at different geographical scales from local to European 

level. The use of the EPC4EU data model allows the 

comparison of EPC datasets across European and 
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supports energy efficiency policies making. This is 

exactly the part of the goal in our building energy domain 

common data model. However, the EPC4EU includes 

only the building and EPC information, without the 

sensors and subsystems. The last step is to translate the 

developed ontology to data model with the method in 

(Trinkunas and Vasilecas, 2007), which provides a graph-

oriented method for ontology transformation into data 

model. The detail of the whole data model is not 

described in this paper and the top-level structure of the 

data model is illustrated in the result section.  

D. Data Harmonization 

In the literature (Kumar et al., 2021), the state of the 

art data harmonization techniques is analyzed. The result 

shows that the heterogeneity of structured, semi-

structured and unstructured data is managed by using 

Natural Language Prepossessing (NLP), machine 

learning, deep learning and ontology technology. The 

method from (Hong et al., 2019) (Pan et al., 2022) try to 

solve the heterogeneity problem applying NLP and 

ontology technology, which shows a significantly 

improvement in the efficiency compared with the 

manually harmonization. Therefore, this work adopts this 

method in our data harmonization module, which is 

summarized in the following steps: define the input data, 

define the mapping rules, convert the attribute according 

to mapping rules, convert the value of the attribute 

according to the data model, and generate the output. 

E. Data Storage 

Building data are captured from sensors and IoT 

devices installed in buildings. Systems called Building 

Management Systems (BMS) are responsible for building 

data capturing and storage. The indicated real-time 

conditions (e.g., energy consumption, indoor humidity 

and temperature) are stored in relational databases such 

as PostgreSQL and MariaDB for later processing 

(Marinakis and Doukas, 2018). The advantage of this 

solution is its simplicity as the end users of the storage 

need to utilize the SQL language to retrieve the stored 

data. The main drawback is that relational databases are 

standalone and in case of a database, downtime the data 

will be lost, another approach that improves the storage 

problem is presented in this research (Marinakis et al., 

2020) where the building data are stored in a flat format 

suitable for fast querying. The type of database used is a 

NoSQL Hadoop cluster, which is the main storage 

solution. MapReduce operations are applied over stored 

building flat schemas and simultaneously this solution 

provides high availability, speed, and scalability and fault 

tolerance. The main issue occurred with the 

aforementioned storage architecture are usage problems 

from storage end users due to the complexity of 

MapReduce and the non-existence of a unified data 

schema that standardizes the operations over stored data. 

The next step of the cloud pipeline, after the data 

harmonization procedure, is the storage of the LSPs 

datasets. Due to the nature of semi-structured data the 

selected database technology should support nested 

formats with multiple properties, with variations on 

schemes of the stored datasets. For that reason, the 

MongoDB NoSQL database is selected. As a document-

oriented database, MongoDB facilitates the storage of 

both structured and unstructured data collections and can 

manage high volume of data loads. In the cloud pipeline, 

the harmonized datasets are consumed from Storage 

Kafka consumer and then persisted in document 

collections. For each different Large-Scale Pilot (LSPs), a 

MongoDB collection accommodates its data load. 

F. Data Querying 

Data querying solutions for building energy data are 

focused only on metadata querying and insights 

extraction. The proposed querying architecture in this 

research (Kapsalis et al., 2022) leverages a graph 

database that receives batch data in JSON format and 

then transforms them into graph entities. Furthermore, the 

graph database persists ontologies and RDF (Resource 

Description Framework Schema) to enhance the stored 

metadata. By leveraging stored metadata patterns and 

relationships a REST API on top of the graph database 

receives JSON input and returns results from stored 

metadata. The main drawback of this data querying 

architecture is that takes into consideration only building 

metadata. The building energy management systems 

expose time-series data from sensors that measure (e.g., 

temperature, humidity, and produced energy) and there is 

the need to manage this type of data (Marinakis et al., 

2013). Nowadays enriched warehouses are multi-

database systems that handle metadata databases and 

time-series databases. The emerging need is the 

management and querying of both data stores (real-time 

and metadata databases) and combining the stored 

information, A system that is database agnostic is needed 

to hide each database query language and the end user 

will be capable to write SQL to query the stored building 

information. 

In general, the goal of the cloud pipeline, in terms of 

storage, is to build an enriched data warehouse where 

harmonized building energy data are collected and 

queried via intelligent procedures and periodic tasks with 

an agnostic database manner. Furthermore, this data 

warehouse will provide the possibility to fuse external 

datasets with the stored LSPs data. For the 

implementation of the database-agnostic data warehouse, 

which means querying different databases, relational and 

non-relational, by using SQL the PRESTO query engine 

functionalities. PRESTO is a distributed SQL query 

engine that provides interactive workloads by querying 

many different data sources. In this case, PRESTO is 

installed and configured on top of MongoDB, enabling 

with this way the big data querying and analysis of the 

harmonized building data over a memory-based 

architecture and without moving the aforementioned 

datasets to another structured system. 
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Figure 2.  Building domain common data model. 

III. DEMONSTRATION 

The data pipeline is evaluated with 11 pilots across 

nine countries, which cover the whole building life cycle 

and different perspectives and scales of building in 

MATRYCS project. The workflow of the architecture 

will be demonstrated how to use the Common Data 

Model to guide the data harmonization, store the 

harmonized data and how to query it afterward.  

The building domain common data model is developed 

to cover the completely building life cycle and different 

perspectives and scales of building in the 11 pilots and is 

divided into ten categories in Fig. 2: Building, Device, 

Energy Performance Certificate, Energy Consumption, 

Transportation, Project, Person, Questionnaire, Billing 

and Weather. Each category contains different classes 

and each class contains different attributes. Those 

categories are based on the Fiware smart data model, 

which separates the data model according to different 

smart domains, each smart domain contains different 

categories and each category contains different classes. 

Because the focus for this study is on building energy 

domain. The Common Data Model is not separated at the 

domain level but at the category level. Based on those 

level definitions, it provides the modularity and simple 

extendibility with other categories or even other domains. 

The detail is not illustrated in Fig. 2. The legend on the 

right side shows what kind of data model and ontology is 

used in the common data model.   

In the following, the developed data pipeline is 

demonstrated whit LSP 1 BTC Tower data. The first step 

is harmonization the BTC Tower data according to the 

common data model. The sample harmonization process 

is illustrated in Fig. 3 The upper table refer to the raw 

data with CSV format as input. The bottom half of the 

picture shows the output in JSON-LD format. The 

harmonization module according to NGSI-LD standard 

(https://www.etsi.org/deliver/etsigs/CIM/001 

099/009/01.01. 01 60/gs cim009v01010), which 

developed by the European Telecommunication 

Standards Institute (ETSI) and used in FIWARE smart 

data model, creates the properties type and id 

automatically. 

 

Figure 3. Sample harmonization process. 

The harmonized BTC Tower data are send through a 

BTC Tower Kafka topic and then stored by leveraging 

Storage mechanism procedures to a BTC Tower 

MongoDB collection. Fig. 4 depicts how the data are 

stored and structured in MongoDB. Data Storage is 

consisted of two sub-components. The first sub-

component is the Kafka Storage Consumer, which 

receives the events from topics where the consumer is 

subscribed. When an incoming event from a topic is 

received from Storage Consumer, it is stored in 

MongoDB, which is the second component of 

MATRYCS Data Storage mechanism. Kafka Storage 

Consumer leverages pymongo, which is the official 

MongoDB Python driver to persist the new information 

to MongoDB collections. Each topic has a respective 

collection in MongoDB, which means that messages 

originated form topic X are stored in collection X.  
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Figure 4. Harmonized BTC tower MongoDB collection. 

 

Figure 5. BTC tower querying via query engine. 

After their insertion in MATRYCS Storage the data 

needs to be exposed in MATRYCS applications, that 

consists the MATRYCS upper layer where the data are 

used for models training. Our contribution in this part is 

the addition of a query engine that ensures the query 

abstraction from upper layers and the possibility to add 

more databases and external data for combining them and 

perform joins over these data and other relational 

operations. The query engine is connected with relational 

and non-relational structures and the end user needs to 

write SQL queries to access the stored MATRYCS large-

scale pilot data. In MATRYCS case, the query engine is 

connected with MongoDB and SQL queries are applied 

from MATRYCS Analytics layer to query the stored data. 

In order to demonstrate the functionality, this study uses 

the LSP 1 BTC Tower dataset and the following query 

that is presented bellow returns the stored BTC Tower 

data (Fig. 5). It is obligatory to define the connection 

name, which is the connected structure, the table schema, 

which is the table schema where tables and connections 

exist. Finally, it is needed to be defined the table and 

collection name to query. The query bellow fetches all 

data stored in BTC Tower limit 100. 

IV. CONCLUSION 

Drawing on the building energy reference architecture, 

this study has demonstrated the big data pipeline for 

building energy management and focused on the big data 

variety problem. The pipeline provides a guideline and 

reference implementation, which also improves the 

interoperability between different data sources using 

ontology. Each step of the data pipeline is discussed and 

analyzed through the LSPs data. Especially the Building 

Energy Domain Common Data Model, which covers the 

whole building life cycle and different perspectives and 

scales of building, is developed based on the existing 

ontology and data model. In the current version of data 

pipeline, this work only processes the semi-structured and 

structured data as input, which will be extended to cover 

unstructured in the future version. 
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