
Ambulance Deployment under Demand 

Uncertainty 
 

Sean Shao Wei Lam 
Health Services Research and Biostatistics Unit, Singapore General Hospital, Singapore 

Email Address: lam.shao.wei@sgh.com.sg 

 

Yee Sian Ng 
Department of Industrial and Systems Engineering, National University of Singapore, Singapore 

Email Address: ngyeesian@gmail.com  

 

Mohanavalli Rajagopal Lakshmanan 
Health Services Research and Biostatistics Unit, Singapore General Hospital, Singapore 

Email Address: rajagopal.mohanavalli@sgh.com.sg  

 

Yih Yng Ng  
Medical Department, Singapore Civil Defence Force, Singapore 

Email Address: ng_yih_yng@scdf.gov.sg 

 

Marcus Eng Hock Ong 
Department of Emergency Medicine, Singapore General Hospital, Singapore 

Duke-NUS Graduate Medical School, Singapore 

Email Address: marcus.ong.e.h@sgh.com.sg 

 

 

 
Abstract—In this study, we develop a robust model for the 

deployment of a fleet of ambulances under demand 

uncertainty. The proposed model remains computationally 

tractable in a full scale model, despite the explicit 

consideration of uncertain demands, for deriving plans that 

are robust against the worst case shortfalls in demand 

coverage. The explicit consideration of resource 

commitments overcomes the problem of cross coverage 

where each ambulance location has the ability to cover more 

than one demand point. An actual case study based on data 

gleaned from the Singapore’s emergency medical services is 

described.  

 

Index Terms—ambulance deployment plans; demand 

uncertainty; response times 

 

I. INTRODUCTION 

Emergency Medical Services (EMS) plays an 

important role in the provision of health care services 

under emergency conditions in the prehospital setting. 

The quality of EMS is determined by many factors, such 

as proficiency of the EMS personnel, ambulance 

efficiency, reliability and utilization rates, and other 

organizational, communications, command and control 

systems. Among the various performance indicators used 

to evaluate EMS performance, response time is an 

important EMS industry benchmark, amongst a basket of 

other indicators. The widespread adoption of response 

                                                           
Manuscript received Sept. 19, 2014; revised Dec. 29 2014. 

times as a key indicator of EMS performance can be 

attributed to its relationship to specific time sensitive 

conditions, such as out-of-hospital cardiac arrest[1]. A 

response times of within 4 minutes to deliver successful 

defibrillation can help increase the chances of survivals 

of such patients [2]. In reality, most of the critical 

emergency incidents served by EMS providers, such as, 

stroke and severe trauma cases [3], are also time-sensitive 

conditions.  

There are various response time targets used in 

different countries. In some US states for example, the 

target is set to cover 95% of the emergency incidents 

within 10 minutes in the urban area and within 30 

minutes in the rural area [4]. In Singapore, the national 

EMS provider uses a quality indicator of 11 minutes as a 

maximum response time threshold for 80% of all 

emergency incidents [5]. In essence, time is a vital factor 

in emergency situations. Therefore, it is critical that 

ambulances be effectively pre-positioned at the correct 

locations in anticipation of emergency calls, so that there 

can be adequate coverage within the target response time 

thresholds.  

This research provides a systematic review of existing 

mathematical programming (MP) models for the 

deployment planning of ambulances, and proposes a new 

model for planning under demand uncertainty which 

overcomes some limitations of existing models. The 

proposed model remains computationally tractable 

despite the explicit consideration of uncertain demands in 
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order to derive plans that are robust against the worst case 

shortfalls in demand coverage.  

II. BACKGROUND 

Resource allocation problems can be classified into 

strategic, tactical and operational decision-making 

problems according to the decision horizon [6]. Similarly, 

real-world EMS providers generally faced the same short, 

medium and long term decision problems in the planning 

and allocation of EMS resources. Some of the decision 

problems faced by these providers are listed in Table I.  

Operational planning by EMS providers considers 

short-term decisions such as for ambulance dispatch and 

dynamic ambulance relocations. Tactical planning 

involves medium term decision horizons which typically 

establish baseline deployment plans (static or dynamic) 

and baseline manpower shift schedules for operational 

planning. Strategic planning involves longer term 

decision horizons and attempts to develop strategies that 

are robust against long-term scenario uncertainties. These 

strategies may be related to strategic policy changes (such 

as in the increase of private ambulance providers in a 

public-private EMS partnership) or long term 

infrastructural decisions (e.g., sizing of ambulance fleets 

and expansion of EMS manpower). In essence, baseline 

tactical plans to guide operational decisions should be 

robust against short term uncertainties, whereas strategic 

plans should be robust against longer-term uncertainties. 

Table 1 lists some example of decision problems faced by 

EMS providers for the respective decision horizons. 

TABLE I.  DECISION PROBLEMS FACED BY EMS PROVIDERS  

Planning 

Problem 
Planning 

Horizon 
Decision Problems 

S
tr

at
eg

ic
 Long term 

(typically 

5-10 
years) 

 EMS appliance fleet sizing[7] 

 Siting of EMS bases[8,9] 

 Public and private EMS 

operations policies[10] 

 EMS manpower planning[11] 

 Ambulance diversion 

policies[12] 

T
ac

ti
ca

l 

Medium 

term (can 
range from 

few 

months to 
a year) 

 Static EMS appliance 

deployment planning[13] 

 Developing dynamic system 

status plans[5,14] 

 EMS appliance and manpower 

scheduling and shift 

planning[5,15] 

O
p

er
at

io
n
al

 

Short-term 

(daily or 
weekly 

decisions)  

 Real-time ambulance dispatch 

[16] 

 Dynamic ambulance 

relocation[17,18]  

 Tiered ambulance dispatch [19] 

 Ambulance routing and 

diversion[20] 

 

A primary objective for tactical planning is to develop 

baseline resource allocation schedules that are robust 

against short term uncertainties in demand and supply, 

such as those related to EMS call volumes, travel times 

and fleet reliability. Resource allocation issues range 

from the staff/shift scheduling to the development of 

dynamic system status plans [21]. One of the most 

prevalent tactical problems is that related to the location 

of bases and allocation of the EMS appliances to bases. 

These appliances may include ambulances and fast 

response paramedics on motorbikes. Simulation and 

heuristical approaches have been proposed to deal with 

these problems [9, 16, 22, 23]. 

A more rigorous quantitative approach is to develop a 

mathematical programming (MP) model with the aim of 

deriving a mathematically optimal ambulance 

deployment strategy under resource constraints. There are 

several existing ambulance location and relocation 

models based on MP approaches. These models have 

evolved over time and undergone different phases of 

evolution that have brought about the development of 

both deterministic and stochastic models under different 

operational needs and regulatory requirements[24]. Some 

examples of deterministic and stochastic ambulance 

deployment models will be discussed in the next section. 

These models will motivate the development of a new 

shortfall-aware stochastic model that will handle cross-

coverage and demand uncertainties without sacrificing 

computational efficiencies.  

III. AMBULANCE DEPLOYMENT MODELS 

This section provides a condensed discussion of 

relevant MP models for the deployment planning of EMS 

appliances. The discussion on existing models will 

systematically motivate the development of a new 

deployment model which considers demand uncertainties. 

An adaptation to deal with the issue of cross coverage in 

existing deterministic models will also be presented. In 

order to facilitate the discussions of these models, we first 

introduce some necessary notations as follows: 

Notations: 

Sets

 

ℝ
 

Set of real numbers

 

ℤ
 

Set of integers

 

𝔹
 

Set of binary numbers

 

Model Parameters 

 

r
 

Coverage standard in time units (minutes)

 

tij

 
Travel time from node i

 

to node j

 

xi

 
Number of ambulances to deploy at location i

 

ci

 

Cost of deploying ambulances to location i

 

aij

 

Adjacency index defined on G

 

such that aij

 

= 1

 

if tij

 

≤ 

r and aij

 

=

 

0 otherwise

 

j

 

Cost associated with shortfalls of coverage in node j

 

zj

 

Number of ambulances committed to demand node j

  

p

 

Number of ambulances available for deployment

 

u

 

Budget available for ambulance deployment

 

Matrices and Vectors

 

c 
 
ℝ+|I|

 

Vector of costs in deploying ambulances to location i, 
ci

 

x 
 
ℝ+|I|

 

Vector of number of ambulances deployed to 
ambulance location i, xi

 

z 
 
ℝ|J|

 
Vector of number of ambulances committed to 

demand location j

 

A 
 
𝔹

 

|I||J|
 

Adjacency matrix with elements aij

 

Decision Variables 

 

dj

 

Demand for ambulances at location j

 

d 
 
ℝ+|J|

 
Vector of demands in node j, dj
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We define ambulance location models on directed 

graphs G = (V,E) whose edges are defined as E={(i,j) : i 

 I, j  J} and vertices, V = (I, J), that is partitioned into 

two disjoint sets: (1) set of potential ambulance locations, 

IV , and; (2) set of demand points, JV. Given a 

coverage standard r, we define coverage of a demand 

point j by location i only when tij ≤ r. In addition, we 

define the following notations: 

A. Deterministic Models 

One of the earliest deterministic models introduced for 

ambulance deployment planning is the location set 

covering model (LSCM) [25]. The objective of this 

model is to determine the minimum number of 

ambulances required to ensure all demand points covered 

by explicitly modeling the costs of deployment. The 

LSCM is given as follows:  

LSCM Primal LSCM Dual 

x
min  xc T  

λ
max  dλT  

 s.t.  

0

A T





x

dx   s.t.  

0

A T





λ

cλT
 

The dual formulation of the LSCM focuses on the 

maximization of demand coverage. The dual has been 

introduced in several early research given its closer 

relevance to the operations of EMS as a public service. 

Following the LSCM, the maximal covering location 

problem (MCLP) was also proposed in an early 

research[26]. The MCLP attempts to maximize the total 

demand covered given a fixed ambulance fleet size, 

thereby introducing a hard constraint which may render 

the problem infeasible.  

A widely adopted target in public EMS service 

providers is to ensure an acceptably high proportion of 

incidents can be served within a predetermined threshold. 

The travel time targets are typically in the range of 8-11 

minutes for 80-90% percentiles of all cases. Given such a 

target-oriented objective, neither the primal nor the dual 

instructs us on the optimal policy. A more appropriate 

model may consider the minimization of the overall 

shortfall in coverage, instead of maximizing the demand 

coverage. The shortfall is directly related to the 

proportion of incidents that can be served within the 

predetermined threshold. In order to deal with such a 

problem, a Minimal Shortfall Location Problem (MSLP) 

can be formulated as follows: 

T

,
T

T

MSLP
min (d - z)

. . A X Z
C X
X 0

x z

s t
u






 

In the MSLP, budget constraints have been included. 

These budget constraints can also be formulated in terms 

of the number of ambulances available for deployment. 

The MSLP is in fact a generalization of the MCLP.  
The MSLP model will continue to minimize shortfalls 

in coverage against the target response time, irrespective 

of whether the number of ambulances committed is in 

excess or shortage over the demands across all nodes, 

subjected to budget/capacity constraints. In order to more 

accurately model the decision criteria based on shortfall 

minimization, we model the following objective instead:

  z-dλ
T

,0max . In the consideration of uncertainties in 

the MP model, such a shortfall-aware objective criterion 

has been shown to be a special case of the success 

probability criterion, but possesses computationally 

desirable qualities in comparison to the success 

probability criterion under general distributional 

assumptions for a model considering uncertainties, and 

distributional ambiguities [27], [28]. 

Both the LSCM and MCLP approaches are static 

models and do not consider the possibility that a 

particular ambulance will be busy to answer emergency 

calls when it is needed–problems of cross coverage (or 

multiple overlapping demands). In order to handle the 

issue of cross coverage, several deterministic and 

stochastic approaches have been proposed. These models 

include the backup coverage models (BACOP) [29] and 

the double standard model (DSM). Another deterministic 

model which explicitly considers the problem of backup 

coverage is the Double Coverage Model (DCM) [30]. 

Even though the BACOP, DSM or DCM provides for the 

cross coverage, thereby mitigating the probability of the 

nearest ambulances being unavailable to answer 

emergency calls, these models did not consider stochastic 

demands.  

B. Extension of Deterministic Model 

Even without considering stochastic demands, one of 

the limitations of the MSLP formulation is that only the 

resource commitment information at the demand nodes is 

explicitly considered. There are no detailed specifications 

of where the resources will be committed from. This will 

result in insufficient coverage if multiple demand nodes 

can be reached from a base location within acceptable 

travel time thresholds. As an example, assume that we 

have the following adjacency matrix, A, defining the 

connectivity between two bases and three demand 

locations within a pre-specified travel time threshold: 

110
A

011

 
  
 

 

For a demand scenario of cover a demand scenario of 

d
T 

= [1, 2, 1], a deployment configuration of x
T
 = [1,1] 

will completely satisfy the constraint zx 
T

A  resulting in 

zero shortfalls, hence, an optimal solution. However, the 

ambulances at the base locations will not be sufficient to 

cover all three demand nodes simultaneously. In order to 

deal with this problem, we introduce an additional 

decision variable to represent “commitments” at the base 

locations, yi, and decompose the adjacency matrix into 

two node-arc sub-matrices. Before describing the model, 

we need to introduce the following additional notations: 
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Decision Variables 

yk Number of ambulances deployed to serve edge k, k 

 E 

y ℝ+
|E| Vector of number of ambulances deployed to serve 

edge k, yk 

Model Parameters 

bik Node-arc adjacency index where bik = 1 if node i is 
the base location serving edge k and bik = 0  

otherwise for i  I 

hjk Node-arc adjacency index where hjk = 1 if node j is 
the demand location served by edge k and hjk = 0  

otherwise for j  J 

B 𝔹 |V||E| Node-arc adjacency matrix with elements bik 

H 𝔹 |V||E| Node-arc adjacency matrix with elements ejk 

Given the above notations, the MSLP model can be 

reformulated to overcome the problem of overlapping 

demands in a static model: 

T

, ,

T

MSLP(S1)
min

. . S d - Hy
X By
C X
X 0; 0

x y s
S

s t

u
S





 

 

C. Stochastic Models 

One of the first models to consider demand uncertainty 

is the Maximal Expected Coverage Location Problem 

(MEXCLP) [31]. MEXCLP introduces a "busy fraction" 

q as the probability that any given ambulance will be 

unavailable to respond to an incoming emergency call. 

The motivation for this model is similar in spirit to the 

deterministic models which consider contingent coverage, 

such as the DCM. Another similar stochastic formulation 

proposed the use of a reliability level in a model which 

sought to maximize the demand covered with specified 

probability [32]. 

In order to consider stochastic demands, a two-stage 

stochastic programming (SP) model can also be 

formulated from the MSLP(S1) problem with the 

assumption that demands are generated by a random 

vector d() for scenarios    with state-space  

equipped with a set (-algebra)  of events and a 

probability measure, P. Representing the second stage 

decisions by   
 ss

~
, the SP model can be 

formulated as follows: 

~

T

MSLP(SP)

min [ ( , )]
. . X By

C X
X 0; 0

E Q X S
s t

u
Y




 

 

where 

Q(x, s) =         min             
T s  

                                      St            ( ) Hy

0

s d

s

 


 

The MSLP(SP) can be solved using the Sample 

Average Approximation (SAA) approach. However, one 

problem with adopting an SP approach is related to 

combinatorial intractability when stochastic demand 

scenarios are considered across all demand nodes. 

Furthermore, the optimal SAA solutions may vary under 

different realizations of the scenarios. 

D. Extension of Stochastic Model 

An alternative to SP is to consider the idea of decision 

robustness. A robust decision model can be formulated to 

ensure that the constraints associated with the uncertain 

demands may only be violated up to a certain acceptable 

robustness level [33], [34]. This threshold level can be 

defined as the reliability level of the robust solution. 

Assuming that the probability of keeping to the optimal 

shortfall levels is at most  , the uncertain inequalities in 

MSLP(S1) can be formulated as a joint chance constraint 

as follows, giving rise to the chance constrained model 

MSLP (CC):  
~

( )P d Hy s                          (1) 

 can be interpreted as the reliability of the solution 

given optimal shortfall levels. Its complement (1-) is 

similar to the probability of unavailability given the 

optimal shortfalls under the resource constraints. The 

implication for this is that the estimated level of 

unavailability based on historical data becomes an 

exogenous decision variable, instead of an endogenous 

estimate from data (which can be difficult to estimate). 

Although this is not an empirical probability estimate, it 

can be viewed as a projected level of unavailability. 

Together with the optimal shortfalls, this probability of 

unavailability will be useful for considering resource 

expansion decisions.  

Considering MSLP (CC) and assuming independent 

demands and using Markov inequality, the left-hand side 

of constraint(1) in MSLP(CC) for each demand node j 

has the following lower bounds: 

~
~

K

K

( )
y 1

y

j
j j jk

k E j jk

k E

E d
P d s h

s h



 
    

 



      (2) 

Consequently, (1) and (2) can be reformulated to arrive 

at a deterministic robust formulation. Considering 

demands at each discretized demand node and time 

segment follows independent Poisson distributions with 

arrival rates j for all jJ, the deterministic robust 

counterpart(RC) for MSLP(CC) is given by replacing the 

chance constraints with a set of deterministic constraints 

based on the Poisson arrival rates, giving rise to the 

MSLP(RC) formulation. 

IV. CASE STUDY 

The case study is based on the national EMS system of 

Singapore. Emergency ambulance services in Singapore 

are provided by the national EMS service provider - the 

Singapore Civil Defence Force (SCDF). In 2011, the 

SCDF operated 46 ambulances. A central command 

centre for the SCDF coordinates all emergency calls 

through a national “995” emergency hotline for civil 

emergencies. The ambulances are then physically 

deployed from bases that may be fire stations or fire posts. 
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Fire posts are satellite locations where ambulances and 

fast response fire fighting vehicles may be deployed.  
Upon emergency activation for medical and trauma 

emergencies, the nearest available ambulance will be 
deployed. The nearest available ambulance may be on 
standby in the bases, at the hospitals or returning to base 
following the conveyance of patients to hospitals. 
Emergency medical treatment will be given to the 
patients on-scene and assigned a triage status following a 
Patient Acuity Category (PAC) scale, ranging from 
priority 1 (PAC1) to priority 4 (PAC4) in decreasing 
levels of patient severity. Upon conveyance to hospitals, 
patients will be handed over to the emergency department 
of the respective hospital. Following the hospital 
handover, the ambulance will then be made available for 
serving the next incoming demand [5, 22].

In this study, data of all the unique cases of 
emergencies from 1

st
 January 2011 to 30

th
 June 2011 was 

used as the source of estimating the arrival rates of 
emergency calls. Fig. 1 shows the distribution of call 
demands over four time periods, Monday, Sunday and the 
rest of the weekdays. The demand profile can be 
distinguished into 8 hourly time blocks: from 0900 hours 
to 1600 hours, 1700 hours to 0000 hours and 0100hours 
to 0800 hours. The total demands from Tuesdays to 
Saturday follow a similar pattern, as compared to 
Sundays and Mondays. Among the total demands across 
all the days, Mondays typically have the largest average 
demands. Fig. 2 shows a chloropeth plot of the geospatial 
distribution of demand volumes according to demand 
volume per square km. 

 

Figure 1. Temporal distribution of call demands across distinct weeks 

and time periods 

For the MP modelling approach, the whole of 
Singapore is rasterized into 30 by 30 equally sized 
rectangular cells, and historical incidents that happened 
within each cell region were aggregated for each cell 
region within each hour. Only 782 cells were retained 
when the land area of Singapore’s main island was 
considered. In the model, time was discretized in hourly 
segments. The distribution of turnaround times for all 
calls within the six monthly time period follows a 
lognormal distribution with a median of approximately 35 
minutes. Fig. 3 shows the empirical turnaround and inter-
arrival times between calls overlaid with lognormal and 
exponential distributions respectively. 

 

Figure 2. Geospatial distribution of demand volumes per square km 
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(a) (b) 

Figure 3. Distributional assumptions: (a) turnaround times following lognormal distributions, and; (b) inter-arrival times following exponential 
distributions 

V. RESULTS AND DISCUSSIONS 

Altogether 53, 300 incident calls were enrolled in this 

study. The breakdown of the characteristics of 

ambulance calls is shown in Table II.  

TABLE II.  CHARACTERISTICS OF AMBULANCE CALLS IN SINGAPORE 

Incident Type Total (%) 

Medical 39640 (74%) 

Trauma 12707 (24%) 

False/Cancelled Calls/ 
Assistance not 

Required 

953 (2%) 

PAC+ Total (%) 

PAC0* 1161 (2%) 

PAC1 6351 (12%) 

PAC2 33332 (63%) 

PAC3 11375 (21%) 

PAC4 1059 (2%) 

Age Group Total (%) 

<10 1262 (2%) 

10-19 1899 (4%) 

20-29 5503 (10%) 

30-39 5266 (10%) 

40-49 5657 (11%) 

50-59 7709 (14%) 

60-69 7551 (14%) 

70-79 7431 (14%) 

>79 11022 (21%) 

Day_Of_Week Total (%) 

Sunday 7399 (14%) 

Monday 8127 (15%) 

Tuesday 7614 (14%) 

Wednesday 7612 (14%) 

Thursday 7698 (14%) 

Friday 7336 (14%) 

Saturday 7514 (14%) 

Time of the Day Total (%) 

11PM-7AM 12242 (23%) 

7AM-3PM 21777 (41%) 

3PM-11PM 19281 (36%) 

+ 22 calls with unknown PAC status. 

* Additional category of PAC0 refers to patients declared dead on 
scene 

The MSLP(RC) model with an objective function 

which minimizes the worst case short falls was solved 

over three 8-hourly shifts for 782 rasterized demand cells 

using AIMMS software (AIMMS, Haarlem, The 

Netherlands) with CPLEX 12 solver (IBM Corporation, 

New York, US). A maximum of two ambulances can be 

deployed in each base. The optimal deployment plan for 

each of the shift is shown in Fig. 4.  

 

Figure 4. Deployment plans for a three shifts system with maximum 
capacity of two ambulances per base  

Coverage proportions are the proportions of demand 

covered in each node assuming an acceptable travel time 

threshold. Fig. 5 shows that reliability level of 80% 

provides the best coverage proportions across all the 

demand nodes for the worst 30-50 demand nodes in 

terms of coverage proportions. The remaining demand 

nodes not shown in Fig. 5 essentially have 100% 

coverage under the recommended deployment plans). 

Consequently, a reliability level of 80% was chosen for 

the derivation of the optimal deployment plans. 

The optimal solutions may not be the best deployment 

plan in consideration of the numerous practical 

complexities and uncertainties confronting decision 

makers that were not considered in the model. For 

example, travel time uncertainties have not been 

explicitly considered in the MSLP(RC) formulation. 

Given these limitations, the use of discrete events 

simulations (DES) [5,23] will help to provide more 

assurance in the quality of the deployment. The quality 

of the robust solution can also be effectively compared 

via a realistic DES model against other alternative 

strategies.  
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Figure 5. Coverage proportions across all demand nodes under different 

reliability levels 

Apart from DES models, geospatial visualizations on 
how the coverage changes across multiple time 
thresholds over the entire demand region will enable 
decision makers to identify gaps, or areas of low 
coverage proportions, to focus on. Adaptive 
augmentation of stakeholder’s perspectives can be 
incorporated into a iterative decision making framework 
that consist of the MSLP (RC) based optimal plan as the 
starting point for developing more practically realistic 
and convincing deployment strategies. Such a decision 
support framework is proposed in Fig. 6. 

VI. CONCLUSIONS AND RECOMMENDATIONS 

This study proposed a robust MP model for the 
deployment of ambulances under demand uncertainty. 
The explicit consideration of resource commitments 
within the network overcomes the problem of cross 
coverage. A case study based on the Singapore’s EMS 
system demonstrates that the deterministic reformulation 
of the robust model retains computational tractability for 
the deployment planning of ambulances in real systems.  

 

Figure 6. Decision support framework incorporating MP approach, 
discrete events simulations and geospatial visualizations  
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