
Automated Creation of Navigable REST Services

Based on REST Chart

Li Li, Tony Tang, and Wu Chou
Shannon IT Lab, Huawei, Bridgewater, New Jersey, U.S.A.

Email: {li.nj.li, tony.tang, wu.chou}@huawei.com

Abstract—As REST architectural style gains popularity in

various areas, there is an acute need for a REST toolkit that

can automate the process of generating service

implementations from the service descriptions. Despite that

we can generate SOAP service implementations from

WSDL files, there is a key distinction between REST

services and WS-* services: the former is navigable by

hypertext whereas the later is not. Conventional REST

toolkits tie the REST API navigability with service actions,

such that the navigability can only be achieved at the

expense of additional data models and programs. To

address this problem, this paper proposes Navigation-First

Design to make a REST API navigable before implementing

any service actions. A Java REST toolkit has been

developed to realize the benefits of this approach through

automated generation of JAX-RS compliant Java resource

and message classes based on the Hierarchical REST Chart,

a Petri-Net based service design framework for REST API.

The toolkit can transform REST Chart XML files into a

navigable REST API prototype, build and deploy it without

the developer writing one line of code. The preliminary

experiments show that the approach is feasible and

promising.

Index Terms—REST API, REST Chart, JAX-RS, Petri-Net,

navigation-first design, code generation

I. INTRODUCTION

In recent years, the REST architectural style [1], [2] is

widely applied in various areas, including real-time

communications [3], [4], Cloud computing [5], and

software-defined networking (SDN) [6]. It is an efficient

and flexible approach to access and integrate large-scale

complex and distributed systems. However, as the

popularity of REST services grows, there is an acute need

for a service modeling framework and toolkit with a

standard machine-readable service description language

for REST APIs - analogous to WSDL [7], [8] and SOAP

[9] toolkits that automate service development process for

WS-* style web services. Such a modeling framework

and toolkit is critical to the rapid design, development,

and deployment of REST services. Moreover, it can

enable the following important features for REST:

 Contract-First design: a REST API can be

designed and conveyed accurately to its stake

Manuscript received December 29, 2014; revised May 20, 2015.

holders, in which the design can be verified

automatically against REST constraints, such that

problems or disagreements can be identified and

resolved before expensive service

implementations.

 Meta-programming: programs for client and server

can be generated automatically or semi-

automatically from the description language that

characterizes the REST API. This not only speeds

up the development process, but also reduces code

size and inconsistencies between the design and

implementation of the REST API.

 Meta-interoperability: service description

language can be used to detect and cope with

functional changes in a REST API without testing

its implementation. This cability can significantly

reduce the cost of integrating a large complex

system by catching the problems at the design

time.

 Automated testing: coverage and workload test

cases can be derived from the service description

of the REST API which can be agnostic and

independent of its implementation.

Since 2009, several service description languages,

including REST Chart [10], WADL [11], RAML [12],

Swagger [13], RSDL [14], API-Blueprint [15], SA-REST

[16], ReLL [17], RADL [18], and RDF-REST [19] are

developed for REST API. However, they are still under

development and none of them is yet being standardized.

Some REST toolkits have also been developed for

these service description languages. These toolkits can

take a concrete REST service description and generate

skeleton code in some programming language, for

example Java, which partially implements the described

REST services. The generated skeleton code can be

modified by developers to complete the service

implementation, to be compiled and then deployed to a

HTTP server.

Although this workflow for REST service is very

similar to the contract-first development process for WS-

* services aided by some SOAP toolkits, the two

workflows have a key distinction: a REST API is driven

by hypertext whereas a WS-* service is not. A REST API

is implemented by distributed resources and each of

which maps the incoming hypertext resource

representation to outgoing resource hypertext

385

Journal of Advanced Management Science Vol. 4, No. 5, September 2016

©2016 Journal of Advanced Management Science
doi: 10.12720/joams.4.5.385-392

representation according to the action performed on the

resource state, such as to create a computer network,

retrieve a conference, update a virtual machine, or delete

a participant. According to the 7 REST constraints [10],

the ability for a client to navigate the resources from an

entry point is a requirement for a REST API and this

requirement is independent of the resource

representations. To implement this navigability in a

REST API typically requires implementation of the

actions performed on resource states, as different actions

can produce different outgoing representations. However,

such an approach, despite being quite complete, is much

more costly because in addition to the REST service

description, it requires development of backend data

models and programs to manipulate the resource states in

a typically 3-tiered REST service architecture.

Furthermore, such approach forces us to commit to a data

model and programs that may need to be updated or even

abandoned, as the REST API under development often

changes and updates frequently.

To address these problems, we propose a new

approach to REST API design and development called

Navigation-First Design, whose main idea is to make a

REST API navigable before it performs any actions. This

approach has several benefits:

 Automated code generation tools can be used to

rapidly create a lightweight REST API prototype

from a REST service description without any

programming work for the developers.

 The working REST API prototype allows the stake

holders (developers and users for example) of the

REST API to interactively study and test the

resource connections, resource representations,

and service allocations through resource

navigation.

 The code of the prototype can be reused to speed

up the development process of the REST API.

To realize these benefits, this paper describes a REST

toolkit that transforms a REST Chart to Java source code

that supports navigation without action. The toolkit also

provides ant script to automatically compile and deploy

the generated Java code, such that with a few clicks in an

IDE, a developer can produce a navigable REST API

prototype without writing one line of code.

The rest of this paper is organized as follows. Section

II reviews the related work. Section III reviews the basic

REST Chart structure for modeling REST APIs. Section

IV gives an overview of the toolkit. Section V focuses on

the REST service generation workflow. Section VI

discusses the prototype implementation, and we

summarize our contributions with section VII.

II. RELATED WORK

WADL [11] is an early effort to describe REST

services, followed by RAML [12], Swagger [13], RSDL

[14], API-Blueprint [15], SA-REST [16], ReLL [17],

REST Chart [10], RADL [18], and RDF-REST [19]. All

of them are encoded in some machine-readable languages,

such as XML, and most of them are standalone

documents, except a few of them, such as SA-REST, are

intended to be embedded within a host language, such as

HTML.

RAML is a YAML language that organizes a REST

API as tree whose nodes are URI templates or references.

The root of the tree identifies the entry point to the REST

API and the children identify the resources reachable

from the parents. Each URI may be associated with some

access methods that define the input and output

representations. While RAML offers a minimalist

structure and several interesting design primitives, such

as inline documentation, resource traits and types, it

could lead to inadvertent violation of the REST

constraints [10] by exposing a list of fixed resource

locations. Also, RAML does not seem to have a way to

tie a hyperlink in hypertext representations with a URI

template in the REST API URI tree. Without these ties, it

would be difficult for a REST client to know the exact

method in order to access a particular hyperlink during

the navigation.

Swagger can describe a REST API in either YAML or

JSON, and its descriptive structure is very similar to

RAML, except with a different set of primitives. For this

reason, it has the same problems as RAML.

RSDL is a XML language that organizes a REST API

around a list of <resource> elements. Each <resource>

element may contain a <location> element that defines its

URI, a <link> element that links it to other resources, and

a <method> element that defines the request and response.

This resource centered design could inadvertently violate

the REST constraints [10] by exposing a fixed set of

resource locations to the clients. Moreover, there are no

ties between the <link> elements, the <method> elements,

and the responses, by which a hyperlink in a response

hypertext can point to its access method.

RADL is a XML language that also organizes a REST

API around <resource> elements. Each <resource>

element may contain a <uri> element that defines its

location and a <interface> that defines the access

methods. The request and response of a method are

defined by <document> elements, which may contain

<link> elements that point to other <document> elements.

Like RSDL, this resource centered design could lead to

fixed resource locations. In this design, even if a client

knows the interface of a resource, it may not know the

exact method in the interface to access a hyperlink of a

document, should there be two or more methods in the

interface.

Despite many improvements over the years, most

recent REST service description languages, except REST

Chart and SA-REST, still include some form of resource

constructs that could lead to fixed resources locations,

relations and interfaces, which is a violation of Roy

Fielding’s REST constraints R3-R5 [10]. Furthermore,

none of the REST toolkits we are aware of supports

Navigation-First Design, as the conventional approaches

regard navigation as the result of actions.

III. REST CHART OVERVIEW

REST Chart is proposed in [10] to design and describe

REST API without violating the REST principles [1],

386

Journal of Advanced Management Science Vol. 4, No. 5, September 2016

©2016 Journal of Advanced Management Science

[10]. One of the key REST principles states that any

client of a REST API should be driven by nothing but

hypertext. This principle requires that a REST API should

guide a client through hypertext without relying on any

out-of-band information that could restrict the REST

API’s freedom to reorganize its resources or change their

representations. It suggests that a REST API should

spend almost all its descriptive effort in defining the

media types (name, structure, and processing rules of data

formats) that the resources accept and produce, without

exposing any fixed resources names, locations, types or

hierarchies.

Following these guidelines, REST Chart models a

REST API as a Colored Petri-Net [20], [21], where each

place in the Petri-Net denotes a media type and each

token denotes a resource representation. A place only

admits tokens of the same media type, but the transitions

are “color blind” and it can be fired by tokens of any

media type. Under this model, REST Chart uses the

transitions to connect the media types with hyperlinks,

and these connections define the processing rules of the

hyperlinks. The places and transitions collectively answer

the critical questions for a hypertext-driven REST client:

1) where are the hyperlinks in a hypertext; 2) what

service does a hyperlink provide; 3) how to interact with

a hyperlink; and 4) what hypertext will the interaction

produce.

Fig. 1 illustrates a basic REST Chart that describes a

typical hypertext-driven request-response interaction. The

REST Chart consists of one transition that connects two

input places and one output place that are labeled by

media types. The “login” places is called “server place”

as its token is generated by the REST server, and the

“credential” place is called “client place” as its token is

generated by the REST Client. This REST Chart indicates

that a client can follows a hyperlink L from the “login”

place to the “account” place, which is another server

place, when the client creates a token in the “credential”

place. The transition models the interaction with a remote

resource identified by L. However, unlike the other

service description languages, REST Chart has no

<resource> element or fixed URI, as it does not model a

REST API as a set of resources.

Figure 1.

Example of a basic REST Chart.

REST Chart uses a XML dialect [10] to encode a

Colored Petri-Net such that it is machine readable and

extensible, and moreover, it can be validated by XML

Schemas. The REST Chart XML for the REST Chart

diagram in Fig. 1 is shown in Listing 1. The places are

defined by the nested <representation> elements that

admit two media types, XML defined by XML Schema

[22] and JSON defined by JSON Schema [23]. The

hyperlink L is defined by a <link> element that contains a

<rel> element, a URI [24] that identifies the service and a

<href> element, a URI Template [25] that identifies the

possible locations of the resource. The transitions are

defined by the <transition> elements which bind the

<link> element to the HTTP protocol [26]-[28].

A REST Chart typically consists of many places and

transitions, and a place in one REST Chart contain

another REST Chart to form Hierarchical REST Chart.

Fig. 2 and Fig. 3 show a Hierarchical REST Chart that

break a large REST API into two modules that can evolve

independently.

Figure 2. Top-level REST Chart for SDN NBI

Figure 3. Nested REST Chart for SDN NBI

IV. REST CHART TOOLKIT

The overall workflow of the REST Chart Toolkit (RC

Toolkit) is outlined in Fig. 4 which transforms a REST

Chart into a navigable REST API prototype in Java. The

login

(x1)

resource

credential

(x2)

account

(x3)

input x2 output x3

L

387

Journal of Advanced Management Science Vol. 4, No. 5, September 2016

©2016 Journal of Advanced Management Science

workflow consists of three stages: 1) service generation;

2) service build; and 3) service deployment.

In stage 1, the Java Source Generation module accepts

a REST Chart XML file and the relevant XML Schema

files, and produces three types of artifacts:

 JAX-RS [29] compliant Java Resource Classes

that correspond to the resources of the REST API.

 Java Message Classes that correspond to the XML

Schemas used by the REST API.

 XML Navigation Messages that contain

hyperlinks between the resources.

Figure 4.

Overall workflow of RC Toolkit

In stage 2, the Build Method module compiles the

generated Java classes and additional Java libraries (jar

files) into a Web Application Archive (war) package that

can be easily stored, transmitted, and deployed to a Web

application container, like Apache Tomcat.

In state 3, the Deploy Method module deploys the war

file into a Tomcat server, such that the REST services can

be navigated using any Web browser or test tool.

To start the navigation, a user visits the entry URI of

the deployed REST services to obtain a response message

in either XML or JSON which contains hyperlinks that

can be followed. The user chooses the appropriate HTTP

1.1 method according to the REST Chart, including GET,

POST, PUT and DELETE, to interact with hyperlinks

and navigate to any resource in the REST API.

This 3 stage process are automated to the extent that a

developer can click a few buttons and configure a few

parameters in Eclipse IDE to create a navigable REST

API from a REST Chart without writing one line of Java

code. The following sections focus on stage 1, the service

creation stage.

V.

REST

SERVICE

GENERATION

This stage consists of three

related workflows

as

depicted in Fig.

5. The first workflow generates the Java

Message Classes from the XML Schemas. The second

workflow generates the XML navigation messages,

and

the third

workflow generates

Java Resource Classes.

A. Java Message Class Workflow

The first workflow uses a JAXB [30] tool xjc [31] to

transform XML schemas to Java Message Classes that

can be used to deserialize XML requests into Java objects

and serialize Java objects to XML responses. This

workflow is relatively independent of REST Chart.

B. Navigation Message Workflow

In the second workflow, the REST Chart XML is

parsed into a DOM tree, from which an internal REST

Chart data structure is built. The XInstance [32] tool is

used to produce sample XML documents from the XML

schemas. These documents are called link-free navigation

messages as they contain random hyperlinks that are

irrelevant to the REST Chart. The Link Replacement

module replaces the random hyperlinks in those XML

messages by the valid hyperlinks in the REST Chart to

produce Linked Navigation Messages for each possible

response of the REST API. The result of this procedure is

illustrated in Fig. 6.

Figure 5. Service generation workflow

Figure 6. Link replacement in navigation message

In Fig. 6, a REST Chart <representation> element

declares a hyperlink L with elements L.<rel>=x and

accounts XSD

<accounts>

 <link ref=x href=y1 />

 <link ref=x href=y2 />

</accounts>

<representation id=accounts>

 <link id=L>

 <rel value=x path=/accounts/link@ref>

 <href value=Y path=/accounts/link@href>

 </link>

</representation>

REST Chart XML XML Schemas

XML Parser

Java
Message

Classes

Java Resource

Classes

Linked XML
Navigation

Messages

XSD-XML Tool XSD-XML

JAXB Tool

Link-free XML

Navigation
Messages

Link

Replacement

Parse Tree

REST Chart

Processing

REST Chart

Data Structure

JAX-RS Code

Generation

Code

Generation

Model

REST Chart XML

XML Schemas

JAX-RS Java

Source Generation

Java
Message

Classes

Java
Resource

Classes

Linked XML
Navigation

Messages

Build Method (ant)
 Additional Java

Libraries

REST Service Package

(war)

Deploy Method (ant)
 Navigable REST API

Tomcat

388

Journal of Advanced Management Science Vol. 4, No. 5, September 2016

©2016 Journal of Advanced Management Science

L.<href>=Y. The locations of these values in XML

messages are specified by XPath [33]. When a random

XML <accounts> message is generated from the XSD,

the workflow locates the <link> elements in the message

based on the XPath. For each located <link> element, its

attributes (rel, href) are replaced by (x, expansion(Y)).

The expansion is necessary because Y is a URI

template that contains variables and cannot be navigated

by any REST client. There are two types of variables in a

URI template: 1) authority variables (e.g. {a}) that

expand to domain names or IP addresses, and 2) path

variables (e.g. {u}) that expand to identifiers. As the

REST services are not yet deployed at this stage, the

workflow only expands the path variables, and the

expansions of authority variables are carried out at

runtime by the generated Java methods.

For example, for a URI template

Y=http://{a}/users/{u}/login, the workflow will expand the

path variable {u} in Y to random identifiers u1 and u2 that

identify two distinct resources:
y1=http://{a}/users/u1/login

y2=http://{a}/users/u2/login
The reason that random identifiers will work is

because when y1 and y2 are dispatched to a generated

Java Resource Class, the class will not use these variables

to perform any actions.

C. Java Resource Class Workflow

The third workflow and the second workflow share the

internal REST Chart data structure. But the third

workflow generates Java Resource Classes based on a

Code Generation Model that defines the mappings from

REST Chart elements to Java Resource Classes as

depicted in Fig. 7. The Code Generation Model maps

each <transition> element in a REST Chart to a Java

Resource Class, and the elements associated with a

<transition> are used to determine the variables in the

Java Resource Class Template as shown by the dashed

arrows.

The Java package name is derived from the

target_namespace of the REST Chart. Each REST Chart

<link> element is used to derive the {Path}, {ClassName}

and {Method} variables of the Java Resource Class. Two

<link> elements with the same href but different rel will

become two Java methods in the same Java Resource

Class. The <control> element is used to derive the

{HTTPMethod}. The media type and XSD of the <input>

element are used to derive the {MediaTypeX} and

{MessageClass} variables respectively. The media type

of the <output> element is used to derive the

{MediaTypeY} variable, while the XSD is used to

construct the Response object.

As the XSD files are transformed to Java Message

Classes by the first workflow in subsection A, this second

workflow knows which Java Message Class is used for

which Java method based on the <transition> element

that ties all the relevant elements together. It also knows

if a Java Message Class is a parameter or the return type

to which the Java method is based on, if the XSD is

associated with the <input> or the <output> element of

the <transition>.

The workflow iterates over the <transition> elements

and creates corresponding Java Resources Classes

following the above mappings. Its time complexity is

O(N) where N is the number of transitions in the REST

Chart.

Figure 7. Map REST chart to java resource class

To elaborate this workflow, we illustrate how the

following REST Chart XML (Listing 1) for Fig. 1 is used

to derive a Java Resource Class (Listing 2), where the

JAX-RS annotations are prefixed by @ and the code

fragments between {} are omitted for clarity.

1. <rest_chart xmlns=... target_namespace=...>
2. <representation id=login>
3. <link id=L>
4. <rel value=http://www.bank.com/login />
5. <href value=http://{a}/users/{u}/login />
6. </link>
7. <representation id=login_xml
8. media_type=application/xml>
9. <schema location=login.xsd />
10. </representation>
11. <representation id=login_json
12. media_type=application/json>
13. <schema location=login.jsd />
14. </representation>
15. </representation>
16. <representation id=credential>
17. <representation id=credential_xml
18. media_type=application/xml>
19. <schema location=credential.xsd />
20. </representation>
21. <representation id=credential_json
22. media_type=application/json>
23. <schema location=credential.jsd />
24. </representation>

<rest_chart targetNamespace=URI_X

1. package {Package}
2. @Path {Path}
3. public class {ClassName} {
4. @{HTTPMethod}
5. @Consumes("{MediaTypeX}")
6. @Produces("{MediaTypeY}")
7. public Response {Method}({MessageClass} in) {
8. }

9. }

xsd

<control>

 <method=GET|PUT|...>

<link>
 <rel value=URI_Y>

 <href value=URI_Z>

xsd

media

type

media

type

389

Journal of Advanced Management Science Vol. 4, No. 5, September 2016

©2016 Journal of Advanced Management Science

25. </representation>
26. <representation id=account>
27. <representation id=account_xml
28. media_type=application/xml>
29. <schema location=account.xsd />
30. <representation>
31. <representation id=account_json
32. media_type=application/json>
33. <schema location=account.jsd />
34. </representation>
35. </representation>
36. <transition>
37. <input>
38. <representation ref=login link=L />
39. </input>
40. <input>
41. <control method=POST />
42. <representation ref=credential />
43. </input>
44. <output>
45. <control status=201 />
46. <representation ref=account />
47. </output>
48. </transition>

49. </rest_chart>
Listing 1: REST Chart XML

1. package {Package}
2. {imports}
3. @Path("/users/{u}/login")
4. public class LoginResource {
5. @Context
6. {context_variables}
7. {auxiliary_methods}
8. @POST
9. @Consumes("application/xml")
10. @Produces("application/xml")
11. public Response loginXML({MessageClass} in) {
12. {load_navigation_xml} }
13. @POST
14. @Consumes("application/json")
15. @Produces("application/json")
16. public Response loginJSON({MessageClass} in) {
17. {load_navigation_json} }
18. }

Listing 2: Java Resource Class derived from Listing 1

TABLE I. MAPPINGS FROM REST CHART TO JAVA

 Chart comments
1 1 {Package}←target_namespace
2 - Java libraries
3 5 @Path←//link[@id=L]/href
4 5 Login←//link[@id=L]/href
5 - Java Context annotation
6 - Obtain request context
7 - Private auxiliary methods

8 41
@POST←//input/control@method for

XML response
9 42,18 XML credential request
10 46,28 XML account response

11 19,29
{MessageClass}←credential.xsd
Response←account.xsd

12 - Load XML navigation message

13 41
@POST←//input/control@method for
JSON response

14 42,21,22 JSON credential request
15 46,31,32 JSON account response

16 19,29
{MessageClass}←credential.xsd
Response←account.xsd

17 -
Transform XML navigation message to

JSON

Table I explains the relation between each line of Java

Resource Class and the REST Chart XML. The line

numbers of REST Chart are ordered by the direction the

workflow searches the REST Chart.

D. Navigation Message Workflow

Each method in a generated Java Resource Class

follow a common workflow as illustrated in Fig. 8 to

return navigation messages in appropriate media types

based on content-negotiation. For different media types,

different procedure is generated, such as

{load_navigation_xml} for XML and {load_navigation_json} for

JSON, as shown in Listing 2.

Figure 8. Common navigation response workflow

In this workflow, each time a request is dispatched to

the Java method, it loads the corresponding Linked XML

Navigation Message, which is generated by the workflow

in section B and saved on disk, into the memory, and

transforms it to a (JAXB) Java Message Object using the

(JAXB) Java Message Class generated by the workflow

in section A. The authority variable in a URI template is

then replaced by the server IP address and port to produce

Linked Message Object. For example:

http://{a}/users/u1/login could become

http://localhost:8080/users/u1/login. Depending on the

requested media types, the method will transform a linked

message object to either XML or JSON Java Response to

ensure the consistency between two different

representations.

Although it is an overhead that the method loads the

navigation message upon each request, it has the

flexibility to allow the navigation messages to be changed

between requests without restarting the REST services.

VI. PROTOTYPE AND EXPERIMENT

The proposed RC Toolkit has been implemented in

Java and tested on several REST

Charts. A user can use

either the Eclipse IDE or command-line to configure and

run an ant script that contains targets to generate JAX-RS

Java source code, to build them and deploy them to a

Tomcat server.

Linked XML

Navigation Message

JAXB Message

Classes

Deserialization Process

JAXB Message Object

Hyperlink Replacement Server IP:Port

Linked JAXB Message Object

Content Generation Process Request Media Type

Hypertext XML Message Hypertext JSON Message

390

Journal of Advanced Management Science Vol. 4, No. 5, September 2016

©2016 Journal of Advanced Management Science

Once the REST API is deployed successfully, a user

can use Postman [34], a REST client extension to the

Chrome browser, to navigate the REST API starting from

an entry URI. The following screenshot (Fig. 9) shows a

navigation response from a SDN Northbound REST API

generated and deployed to a Tomcat server by RC Toolkit.

The navigation XML messages contain random data but

fully functional hyperlinks. The hyperlinks are

highlighted by Postman and they can be followed by

clicking. To switch between XML and JSON, a user just

clicks the buttons on top of the screen.

Figure 9. Screenshot of testing a generated REST API

A user can also send HTTP POST or PUT request to a

URI by providing some random XML or JSON body.

The REST API will return navigational response

messages with functional hyperlinks as well.

Two REST APIs were tested: the SDN REST API

defined by a Hierarchical REST Chart and 4 nested REST

Charts, and the Coffee REST API defined by one REST

Chart. For each REST Chart, the total numbers of places,

transitions, XML schemas, Java Message Classes, Java

Resource Classes, and Navigation Messages are

summarized in Table II. The performance of the REST

Service Generation stage on these two REST Charts is

based on the average of over 6 runs on a 32-bit Windows

7 notebook computer (Intel Core i5 dual core 2.67Ghz

and 4GB RAM), and it is summarized in the last two

rows of Table II.

TABLE II. PERFORMANCE OF JAVA CODE GENERATION

Measurements SDN Coffee

Place 19 9

Transition 22 7

XSD 15 11

Navigation Message 15 11

Java Message Class 64 49

Java Resource Class 16 6

avg (second) 4 3.3

std 1.2 0.8

The experiments show that the workflow scales well

when the number of transitions increases. The SDN

REST Chart had 3 (22/7) times of number of transitions

and 2 (19/9) times of number of places as the Coffee

REST Chart, but its workflow time is only 4/3.3 = 1.2

times of Coffee, with relatively stable performance.

We also tested the performance of the generated SDN

REST API deployed to Tomcat (JVM 64 bit, 1.7.0_67

Tomcat 7.0.55) running at a Linux CentOS 6.5 server

(Intel Xeon 5645-six core [2.4GHz]) x2 24 logical core,

12 physical core, 132GB RAM) using JMeter [35]

running at 64-bit Windows 7 Professional machine (Intel

core i7-2600 CPU@3.4GHz 4 physical core, 8 logical

core, 16 GB RAM). The server and client machines are

connected by LAN. JMeter was used to simulate the

concurrent REST clients accessing a Tomcat server,

while each JMeter thread repeats 17 predefined requests

100 times. 4 performance tests were conducted without

any optimization to the network, Tomcat, or Java:

 Test 1: 10 Tomcat instances and 1 JMeter thread

for each Tomcat.

 Test 2: 10 Tomcat instances and 5 JMeter threads

for each Tomcat.

 Test 3: 20 Tomcat instances and 1 JMeter thread

for each Tomcat.

 Test 4: 20 Tomcat instances and 5 JMeter threads

for each Tomcat.

Tests 1 and 2 were each repeated 5 times, while tests 3

and 4 were each repeated 3 times. The average response

time and throughput (#request/s) reported by JMeter are

summarized in the table below.

TABLE III. PERFORMANCE OF GENERATED REST API

Tests
Total

requests

Average

response

time (ms)

Average

throughput

(responses/s)

1 17,000 21.2 433.9

2 85,000 57.6 805.3

3 34,000 33.6 422.6

4 170,000 109.6 763.8

The average response time was less than 60ms when

the workloads were moderate in the first three tests. The

average response time increased to 100ms when the

workload was high at the 4
th

 test. The system throughputs

ranged from 21 to 43 responses/second per Tomcat. The

tests show that the automatically generated REST API is

efficient and it can support concurrent testing by a team

of users.

VII. CONCLUSIONS

The contributions of this paper are summarized below:
 We proposed Navigation-First Design approach to

reduce dependencies of REST API on backend

data models and programs for rapid prototyping.
 We developed a REST toolkit based on REST

Chart that combines REST service generation,

build, and deployment into a seamless workflow.
 We developed a method that generates JAX-RS

compliant Java Resource and Message Classes

that allows a REST API to be navigated without

performing any service actions.
 The generated Java code automatically supports

many media types defined in REST Chart based

on content-negotiation.
For future work, we plan to enrich the Java binding of

REST Chart and enhance the process of navigation

messages generation. We also plan to integrate code

generation process with code editing process, such that

391

Journal of Advanced Management Science Vol. 4, No. 5, September 2016

©2016 Journal of Advanced Management Science

programs created by developers and tools can be

integrated seamlessly to enable a rapid development cycle.

REFERENCES

[1] R. T. Fielding, “Architectural styles and the design of network-

based software architectures,” Ph.D. dissertation, University of

California, Irvine, 2000.
[2] L. Richardson and S. Ruby, RESTful Web Services, 1st ed.

Sebastopol, CA: O'Relly, 2007.

[3] Twilio REST API. [Online]. Available:
http://www.twilio.com/docs/api

[4] GSMA OneAPI. [Online]. Available:

http://www.gsma.com/oneapi/voice-call-control-restful-api/
[5] Amazon Simple Storage Service REST API. (March 2006).

[Online]. Available:
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html

[6] Floodlight REST API. [Online]. Available:

http://www.openflowhub.org/display/floodlightcontroller/Floodlig
ht+REST+API

[7] E. Christensen, et al. (eds). (March 2001). Web Services

Description Language (WSDL) 1.1, W3C Note. [Online].
Available: http://www.w3.org/TR/wsdl

[8] R. Chinnici, et al. (eds). (June 2007). Web Services Description

Language (WSDL) Version 2.0 Part 1: Core Language, W3C
Recommendation. [Online]. Available:

http://www.w3.org/TR/wsdl20/

[9] M. Gudgin, et al. (eds). (April 2007). SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition). W3C Recommendation.

[Online]. Available: http://www.w3.org/TR/soap12-part1/

[10] L. Li and W. Chou, “Design and describe REST API without
violating REST: A petri net based approach,” in Proc. ICWS 2011,

Washington DC, USA, July 4-9, 2011, pp. 508-515.

[11] M. Hadley. (August 2009). Web Application Description
Language. W3C member Submission. [Online]. Available:

http://www.w3.org/Submission/wadl/

[12] RAML Version 0.8. [Online]. Available: http://raml.org/spec.html
[13] Swagger 2.0. [Online]. Available: https://github.com/swagger-

api/swagger-spec

[14] J. Robie, R. Cavicchio, R. Sinnema, and E. Wilde. (2013).
RESTful Service Description Language (RSDL). Describing

RESTful Services Without Tight Coupling, Balisage: The Markup

Conferenc. [Online]. Available:
http://www.balisage.net/Proceedings/vol10/html/Robie01/Balisage

Vol10-Robie01.html

[15] API Blueprint Format 1A revision 7. [Online]. Available:
https://github.com/apiaryio/api-

blueprint/blob/master/API%20Blueprint%20Specification.md

[16] K. Gomadam, A. Ranabahu, and A. Sheth. (April 2010). SA-
REST: Semantic Annotation of Web Resources. [Online].

Available: http://www.w3.org/Submission/SA-REST/

[17] R. Alarcon and E. Wilde, “Linking data from RESTful services,

LDOW 2010,” April 27, 2010, Raleigh, North Carolina.

[18] J. Robie. (2014). RESTful API Description Language (RADL).

[Online]. Available: https://github.com/restful-api-description-
language/RADL

[19] Pierre-Antoine Champin, RDF-REST: A Unifying Framework for

Web APIs and Linked Data. Services and Applications over
Linked APIs and Data (SALAD), workshop at ESWC, May 2013,

Montpellier (FR), France, pp.10-19.

[20] T. Murata, “Petri nets: Properties, analysis and applications,” in
Proc. the IEEE, vol. 77, no. 4, pp. 541-580, April 1989.

[21] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event

Systems, 2nd ed. New York, NY: Springer, 2008, ch. 4.
[22] H. S. Thompson, et al (ed). (October 2004). XML Schema Part 1:

Structures Second Edition, W3C Recommendation. [Online].
Available: http://www.w3.org/TR/xmlschema-1/

[23] JSON Schema and Hyper-Schema. [Online]. Available:
http://json-schema.org/documentation.html

[24] T. Berners-Lee, et al. (January 2005). Uniform Resource Identifier

(URI): Generic Syntax, Request for Comments: 3986. [Online].
Available: https://tools.ietf.org/html/rfc3986

[25] J. Gregorio, et al. (March 2012). URI Template, Request for

Comments: 6570. [Online]. Available:
https://tools.ietf.org/html/rfc6570

[26] R. Fielding, et al (eds). (June 2014). Hypertext Transfer Protocol

(HTTP/1.1): Message Syntax and Routing, IETF RFC7230.
[Online]. Available: http://tools.ietf.org/html/rfc7230

[27] R. Fielding, et al (eds). (June 2014). Hypertext Transfer Protocol

(HTTP/1.1): Semantics and Content, IETF RFC7231.
http://tools.ietf.org/html/rfc723

[28] M. Belshe, et al (eds). (October 2014). Hypertext Transfer

Protocol version 2. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-httpbis-http2-15

[29] S. Pericas-Geertsen and M. Potociar, JAX-RS: Java™ API for

RESTful Web Services, Version 2.0 Final Release, May 22, 2013.
[30] K. Kawaguchi, S. Vajjhala, and J. Fialli, The Java™ Architecture

for XML Binding (JAXB) 2.2, Final Release, December 10, 2009.

[31] Java TM Architecture for XML Binding Binding Compiler (xjc).
Implementation Version: 2.2.4. [Online]. Available:

https://jaxb.java.net/2.2.4/docs/xjc.html

[32] XSInstance. Generating Sample XML for given XMLSchema.
[Online]. Available:

http://code.google.com/p/jlibs/wiki/XSInstance

[33] A. Berglund, et al (ed). (December 2010). XML Path Language
(XPath) 2.0 (Second Edition), W3C Recommendation. [Online].

Available: http://www.w3.org/TR/xpath20/

[34] Postman. [Online]. Available:
https://chrome.google.com/webstore/detail/postman-rest-

client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en#detail/postma

n-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en
[35] Apache JMeter. [Online]. Available: http://jmeter.apache.org/

 Dr. Li Li

received his Ph.D. in computer sciences from University of

Alabama at Birmingham,

USA in 1995, and M.S. in computational

linguistics from Huazhong University of Sciences and Technology,
 China in 1987. He

joined Huawei Shannon IT Lab

in 2012

and his

current research interest includes

web services, cloud computing and

software-defined networking. He

has published over 60 conference and

journal papers and 1 book on

Artificial Intelligence. He currently holds

6

US patents. Dr. Li is a member of IEEE and ACM, and he

was the

editor of 2 ISO/ECMA CSTA standards and made significant

contributions to W3C WS-RA standard suite.

 Mr. Tony Tang

received his M.S. in electrical and computer
engineering

from Northeastern University, USA in 2008. He has over 5

years of working experience in the IT industry and he currently works

as a contractor for Huawei.

 Dr. Wu Chou

graduated from Stanford University in 1990 with four
advanced degrees in science and engineering.

He is VP, Chief IT

Scientist, and Head of Huawei Shannon (IT) Lab, USA. He joined

AT&T Bell Labs after obtaining his Ph.D. degree in electrical
engineering,

and he continued his professional career from AT&T Bell

Labs to Lucent Bell Labs and Avaya Labs before joining Huawei. He

published over 150 journal and conference papers, holds 35

US and
international patents with many additional patent applications pending.

 Dr. Chou

is an IEEE Fellow. He served

as editor and area

expert for

multiple international standards at W3C, ECMA, ISO, ETSI, etc. He
was an editor of IEEE Transactions on Services Computing (TSC),

IEEE TSC Special Issue on Cloud Computing, IEEE Transactions

on

Audio and Language Processing,

and Journal of Web Services Research.

392

Journal of Advanced Management Science Vol. 4, No. 5, September 2016

©2016 Journal of Advanced Management Science

