
Big Data Techniques for Predictive Business

Intelligence

Keith Gutfreund
Elsevier Labs, Cambridge, MA

Email: k.gutfreund@elsevier.com

Abstract—Using Apache SparkTM, Natural Language

Processing (NLP), and text mining, the author’s team

analyzed enterprise Customer Relationship Management

(CRM) data to predict and combat premature sales attrition.

NLP techniques were employed to identify critical patterns

in unstructured CRM data fields. The Apache Spark big

data engine and the DatabricksTM big data software as a

service (SaaS) platform were then used to efficiently locate

evidence of these patterns within large amounts of

unstructured CRM data. New business reports are being

generated from these patterns so that in-house support staff

may proactively engage with customers. Future work will

focus on automating these techniques to identify new

problems and to quickly spot emerging trends.

Index Terms—big data, apache spark, Natural Language

Processing (NLP), Customer Relationship Management

(CRM) software

I. INTRODUCTION

Like most large enterprises, Elsevier uses Customer

Relationship Management (CRM) software to manage

multi-channel communications between its customers and

its in-house support teams.

The customer data are collected from electronic forms

(email, web) as well as from transcribed voice

conversations. The data are then manually annotated and

classified/categorized into a small number of fixed-value

fields by trained customer service representatives. Both

the classified/categorized data fields, as well as the large

amount of free, unstructured text, are incorporated into an

Oracle relational database.

Elsevier has thousands of customers and voluminous

CRM data, with new customer data arriving continuously.

The Oracle database provides structured query search

capabilities, although due to the large amount of data, this

is limited to off-line batch mode processing of the

structured data fields indexed by the database software.

The author’s team is using big data engines, natural

language processing (NLP), and text mining to improve

the system in two important ways:

1. Big Data techniques provide interactive access

to the CRM data for search, experimentation,

and analytics.

Manuscript received October 1, 2015; revised January 21, 2016.

2. The large amount of unstructured data is mined

to yield new analytics and predictive business

intelligence.

Big Data computation engines, NLP techniques, and

text-mining algorithms allow us to discover new

customer problems, identify trends, and proactively

combat sales attrition. For example, we can discover

problems hidden in transcribed free text conversations

with phrases like: “I’m having trouble accessing resource

X” or “My login isn’t working today”. Further, we can

preemptively combat sales attrition by scanning

conversations for patterns like, “I’m very unhappy with

product (or feature or service) Y”, and then proactively

engaging with the unhappy customers.

Our goal was to examine raw customer interactions

using tools and techniques that are not part of

contemporary CRM packages, namely Big Data

computation engines and natural language processing

algorithms. We hoped to accomplish two objectives:

1. Increase the amount of structured information

that could be used for reporting, and

2. Develop a trend spotting method to identify new

problems early.

A. The Enterprise CRM Dataset

Elsevier customer data is stored in the Oracle

RightNow CRM software product [1]. RightNow

provides a repository for storing email, web and

telephone customer interactions, and the repository may

be queried interactively, using Oracle RightNow tools

and interfaces, as well as programmatically, using custom

database access software. The data is categorized upon

entry and data extracts from the repository are provided

to in-house analysts. Additionally, a variety of reports are

generated from this data. The repository holds millions of

customer interaction records.

We experimented with a RightNow data sample

containing approximately 231k customer interaction

records. Each record in the dataset contained the fields

shown in Table I. Three fields are of particular interest to

this paper. The Disposition Level 1 and Disposition Level

2 fields provide a two-level categorization of the

customer incident, and a large, unstructured text field

contains the historical communications between the

customer and the support staff, as well as between

individual support staff members during an incident. At

158©2017 Journal of Advanced Management Science

Journal of Advanced Management Science Vol. 5, No. 2, March 2017

doi: 10.18178/joams.5.2.158-163

the beginning of this project, the large text field was not

used for any analytical purpose.

TABLE I. RIGHTNOW RAW DATA FIELDS

Field Example

ID 141031-006570

Date (original) 31/10/2014 10.48 PM

Date (normalized) 2014-10-31T00:00:00.000

Date (closed) 2014-10-31T00:00:00.000

Channel ID Web

Product Scopus

Subject The system doesn’t seem to be working

Contact type Employee of academic institute

Flag 0

Queue Europe

Mailbox NL Info

Status Solved – No Response

Text

The system doesn’t seem to be working when I

try to log on and I have a deadline soon and I
need to reference my sources…

Disposition Level1 Authentication

Disposition Level2 Cannot login

B. Big Data Tools

A traditional non-Big Data approach to analyzing large

datasets with millions of data records and unstructured

text fields typically requires machines with powerful

processors, large disks, and vast amounts of random

access memory. This approach is costly in terms of hard

ware and it does not scale beyond the largest machines

that can be acquired for the task. Alternatively,

contemporary Big Data techniques allow datasets to be

distributed over many modestly sized machines and also

allows for parallel processing on the distributed data.

Apache
TM

 Hadoop
®
(http://hadoop.apache.org) is an open-

source Big Data software framework for distributed

storage and processing of large data collections - it is the

most well-known Big Data tool. Hadoop provides for a

distributed disk-based file system and it supports the

well-known MapReduce programming interface on this

data.

Jeffery Dean and Sanjay Ghemawat created

MapReduce at Google in the early 2000’s and released it

in 2004 [2], [3]. MapReduce is a combination of a

software programming model and an implementation for

processing and generating large data sets. The

MapReduce programming library hid the “… messy

details of parallelization, fault-tolerance, data distribution

and load balancing.” [2], [3]. Simple MapReduce

constructs yielded solutions that were both efficient and

scalable and permitted automatic parallelization and

distributed data processing.

In 2004 Dean and Ghemawat cited examples of

interesting programs easily expressed in MapReduce; we

find that those are still relevant today. Two of these

problems are:

 Web document (word, frequency) pair

computations to determine the most frequent

and/or important words appearing in a document

 Distributed sorting of key, record pairs

We make use of both of these programming examples

in this paper.

MapReduce itself does not define a new programming

model; rather, it is based on functional programming

languages like Common Lisp [4] along with methods and

message-passing systems that were first developed in the

early 1990’s. At the First CRPC Workshop on Standards

for Message Passing in a Distributed Memory

Environment in 1992 [5], participants discussed the need

of a system to address the most difficult aspects of

distributed memory applications, viz.:

1. Devising a correct parallel program

2. Optimizing the program code for efficient and

scalable performance.

These same functional programming ideas and

message passing techniques are intrinsic to MapReduce.

Following upon Dean and Ghemawat’s MapReduce

work, a first non-Google implementation of MapReduce,

called Hadoop, was created in 2005 by Doug Cutting and

Mike Cafarella. Hadoop was originally part of the Nutch

search engine project [6].The Hadoop package includes

both a distributed file system called the Hadoop

Distributed File System (HDFS) and the MapReduce

software library. Since 2006, Hadoop has been widely

used for a variety of distributed computing problems. See

[7], [8] for examples.

While Hadoop works well for some problems, it

suffers from some significant deficiencies.

 The MapReduce programming paradigm is not a

good fit for many programming abstractions

 Hadoop MapReduce is made to run on distributed

data stored on disk, the Hadoop Distributed File

System (HDFS), and not in RAM

These deficiencies eventually led to a new solution for

Big Data processing, namely Apache Spark
TM

.

Apache Spark is the newestopen-source software

framework for big data [9]. Spark differs from Hadoop in

two important ways:

1. Spark’s distributed data collection is stored in

RAM, providing for a much faster processing

engine.

2. Spark has built-in programming abstractions and

libraries that make it a natural fit for applications

using Structured Query Language (SQL), Extract,

Transform Load (ETL) algorithms, and machine

learning [10].

Apache Spark has several features and programming

abstractions that were useful for this paper:

In-memory RDDs: Spark distributes data across

worker machines using fault-tolerant resilient distributed

datasets (RDDs). Unlike Hadoop’s HDFS, Spark’s RDDs

will use RAM but will spill data to disk as necessary. We

were able to store much of our data in memory, which

dramatically improved processing time. The following

159©2017 Journal of Advanced Management Science

Journal of Advanced Management Science Vol. 5, No. 2, March 2017

two lines of Python code show loading a file into an RDD

distributed across multiple worker machines and then

printing the first 3 lines:

>>>inputRDD = sc.textFile("/mnt/data.txt.gz”)

>>>inputRDD.take(3)

Results:

- [u"141031-006570\t31/10/2014 10.48 PM\t2014-

10…

- 014 04.52 PM\tWeb\tScopus\tThe system doesn't

seem …

- 4.52 PM\tWeb\tScopus\tThe system doesn't seem

to be working…

The “sc” above is the Spark context and represents the

main program entry point for Spark functionality. The

“/mnt/…” path is the data path to the file to be loaded.

Lazy evaluation: Both Hadoop and Spark solve

complex tasks by cascading multiple MapReduce

operations. Spark’s lazy evaluation postpones actual code

execution, thus permitting Spark to optimize the order of

evaluation. Below is a simple example demonstrating

Spark’s lazy evaluation:

>>> inputRDD = sc.textFile("/mnt/

ScopusIncidentData.txt.gz")

Command took 0.08s

>>> inputRDD.count()

Out[1]: 231671

Command took 2.82s

Above, Spark reports that the loading of a text file

containing 231,671 lines into RAM from an external file

system took only 0.08 seconds, whereas counting the

number of lines in the file took 2.82 seconds. Spark

delayed reading the text file until that data was actually

required by the count () operation.

Direct access to distributed data: Spark permits

operations directly on RDDs, and provides abstractions to

view RDDs as relational databases. Spark provides SQL

operations (like SELECT * from table) as shown below:

>>>rows = sqlContext.sql(‘select * from

trouble_table’).take(2)

>>> for x in rows:

 print x

Row(Message=u'onsider the ethical plagiarism

[Reference: 141031-003226] We are escalating …

Row(Message=u'onsider the ethical plagiarism

[Reference: 141031-003226] Incident No: 141031-

003226 Mail forwarded from …

Command took 5.03s

Above, we used a Spark SQL Select * command to

read and display two rows from an RDD.

In this work we used Spark to deploy our data across

multiple machines using Spark’s resilient distributed

datasets (RDDs), we employed various MapReduce

operations, and we used SQL abstractions and other

operations directly on distributed data.

Lastly, one significant challenge for both Hadoop and

Spark is the lack of an out-of-the-box interactive, cloud-

based, big data framework. Lacking such a framework

solution providers are required to repeatedly size and

design the hardware infrastructure needed to manage

(start, stop, monitor) the multiple hardware components

within a MapReduce implementation. This is a lot of

work. Fortunately, Databricks (http://databricks.com), a

company formed by the Apache Spark inventors at the

University of California, Berkeley, provides an

interactive shell over a cloud-based Spark

implementation that handles much of this work.

Databricks manages the various hardware components of

a MapReduce implementation, it provides an interactive

shell for experimentation and development, and it

provides tools to monitor and debug performance. Our

Databricks implementation reported in this paper

includesboth Scala and Python programs running Apache

Spark on Amazon cloud instances.

The Databricks shell is a notebook interface for

interacting with Spark. The Databricks notebook allows

the user to intermix basic markup display with Python,

Scala, R, and SQL code. In Fig. 1 below, the Databricks

notebook starts with a title “Spark Scopus Incident

Program,” written in markup. Next, Python Spark code

loads a CRM text file into an RDDand then uses a filter

transformation to create a new RDD without the first

header line in the data file.

Figure 1. Databricks Notebook screen shot with mark up and code.

C. Natural Language Processing

Natural Language Processing (NLP) is a blend of

computer science, artificial intelligence, and

computational linguistics [11]. NLP dates back to the

1950s and 1960s with early experiments in language

understanding [12] and translation programs [13].

We employed a couple different NLP techniques in

this project. First, we implemented a concordancer [14] to

extract sentences containing key phrases and to examine

words preceding and following those key phrases. As an

example, some selected output from our concordancer for

the key phrase “trouble with” is shown in Table II.

TABLE II. CONCORDANCER OUTPUT

ID Output

141002-001480

that you are having trouble with your purchase. In

order to

140929-007053

scussed I am having trouble with advanced author
searches

140929-003433

hear you are having trouble with access to Science

Direct.

160©2017 Journal of Advanced Management Science

Journal of Advanced Management Science Vol. 5, No. 2, March 2017

Next, we looked at single-word (unigram), two-word

(bigram) and three-word (trigram) phrases preceding and

following the key phrases supplied to the concordancer.

In text analysis applications, n-grams language models

(unigram, bigram, trigram …) along with Markov models

are used to probabilistically predict words in a sequence

[15]. In our application we are examining the different n-

grams for their significance in identifying important

trends.

The following Python code fragment is used to return a

list of n-grams found within a body of text. Given a

concordancer retrieval, we would invoke the Python

makeNGrams () function twice, once for the words

preceding the key phrase and once for the words

following the key phrase.

Make n-grams

n - size of n-gram

text - string to break into n-grams

Return list of n-gram strings

import re

def makeNGrams(n,text):

 # Split the words, discard non-letters

 words = text.split(" ")

 filtered_words=[]

 for w in words:

 if re.match("[a-zA-Z]+", w):

 filtered_words.append(w)

 words = filtered_words

 # Convert n-gram to space separated words

 ngrams = []

 for i in xrange(len(words) -(n-1)):

 gram = ''

 for j in xrange(n):

 gram += words[i+j] + ' '

 # Returning list of ngram strings

 ngrams.append(gram.strip())

 return ngrams

Frequently occurring n-grams were then further

investigated for trend analysis.

II. APPROACH

Our team analyzed the unstructured text field in each

data record and with the goal of identifying patterns and

the early discovery of new customer problems. We

typically started with an intuition like: “I’m having a

problem with feature X” and then enhanced it to: “I’m

having trouble with feature X” and “I’m having difficulty

with feature X”. We employed software regular

expressions to assist with the pattern matching, so that the

above pattern would be similar to: “I’m having

(problem*|trouble|difficult*) (with|doing) X”. The

vertical bar ‘|’ indicates the logical disjunction (“OR”) of

multiple choices, e.g. the regular expression “(with|doing)”

matches sentences containing the word “with” or the

word “doing”. The asterisk ‘*’ matches zero or more

letters, e.g. “difficult*” matches the words “difficulty

“and “difficulties”. The “\d” matches a digit, e.g. “IE\d”

would match IE7, IE8, or IE9. After applying these

regular expressions against the text field in all records,

we then count the occurrences of the different values of X

and display the most frequently occurring values. These

matches would be what our users were most often

reporting as problems, as troublesome, or as difficult.

TABLE III. SAMPLE PATTERNS TO IDENTIFY NEW PROBLEMS

Browser Issues

browser | firefox | safari | chrome | internet explorer | IE\d

Legal, Ethical Issues

plagiarize | plagiarism

cheat | cheating

legal (action | proceeding)

Products

Reaxys

Scopus

ScienceDirect

SciVal

SciVerse

Cut off Access

authentication

restore

remove

suspen(d | sion)

delete(d)

deactivate

disable

excessive usage

TABLE IV. SAMPLE PATTERNS TO IDENTIFY TRENDS

Trend: Broken or Not Working
(not working now) | (no longer working) | (was working)
((does not)|doesn’t) work
(is | are | now) broken
(can’t | can not | can no longer)
having (trouble | difficulty | problem) with
(is now) | (has been) | (is still) unavailable
(serious | substantial | significant | real) (trouble | difficulty | problem)

Trend: Customer Satisfaction
not happy
(very | extremely | serious) (unhappy | upset | dissatisfied)

Trend: Customer Asking for Help for Urgent Matters
in proximity of “urgent” or “serious”: (please help) | (please fix) |

(need help)

Table III shows some sample patterns we employed to

identify new problems in the data. Here, one interesting

pattern we discovered arose from customers reporting

legal and ethical issues, including plagiarism and

cheating. A second pattern attempted to identify

additional products that were involved in a customer

complaint. A third pattern attempted to classify the

reasons why a customer’s account was deactivated. For

example, excessive usage might indicate users crawling

the product for content. These problems had not

previously been tracked.
Table IV shows some sample patterns we employed to

identify new trends in the data. Our hope is that these

patterns will help us to quickly identify and address

emerging issues leading to customer dissatisfaction. For

example, features that suddenly stopped working could

161©2017 Journal of Advanced Management Science

Journal of Advanced Management Science Vol. 5, No. 2, March 2017

be identified in text matching the expression: (X not

working now) | (X no longer working) | (X was working).

Customer dissatisfaction could be detected in text

matching the expression: (very | extremely | serious)

followed by (unhappy | upset | dissatisfied)

Once we have selected a promising pattern, we then

use the concordance and our n-gram software to identify

key values for a trend or issue. The Databricks Spark

platform provides an interactive platform that facilitates

easy experimentation, structured query language (SQL)

lookup operations, and some basic visualizations.

Fig. 2 shows a Databricks visualization of the

distribution of Channel values in reported incidents over

different time periods.

Fig. 3 shows a Databricks visualization of the final

disposition of customer problems reported over time.

Figure 2. Databricks visualization of reporting channel over time.

Figure 3. Databricks visualization of problem disposition over time.

III. NEXT STEPS

Now that we have new sets of patterns to identify

problems and trends, we are in the process of migrating

these to the RightNow CRM reporting system as standing

queries and prepared statements. These will then be

included in our regular analysis.

One powerful next step is to automate both the

ingestion and the analysis of CRM data. As new customer

reports are transcribed and as customer emails arrive, new

data records are automatically added to the existing CRM

system.

Nevertheless, appending new data records to a Spark

dataset requires a slightly different approach. Spark’s

Resilient Distributed Datasets (RDDs) are immutable–

once created, an RDD is not modifiable. This prevents us

from appending new data to an existing RDD.

Nevertheless, if we treat the newly arriving data as a data

stream; Spark provides a programming engine and

abstraction that transforms a data stream into a sequence

of RDDs, as show in Fig. 4. Spark calls this abstraction a

discretized stream (DStream).

Figure 4. Spark Discretized Stream (DStream) as batch RDDs.

The sequence of RDDs that make up a DStream may

be processed individually as shown in Fig. 4 or a

DStream may be combined with an RDD. The Spark

Python demonstration code below shows a map-reduce

word frequency computation being carried out on each

arriving batch of CRM data arriving at a TCP socket.

from pyspark.streaming import StreamingContext

Read and process CRM data stream every 60sec

stream_sc = StreamingContext(sc, 60)

records= stream_sc.socketTextStream(host,port)

Separate tab-delimited record into fields

fieldsRDD = records.map(lambda x: x.split(‘\t’))

Operate on the text field of CRM data

textRDD = fieldsRDD.map(lambda x: x[10])

RDD of the words in the text field

wordsRDD=textRDD.flatMap(lambda x: x.split(‘ ‘))

Frequency of words appearing in this batch RDD

pairs = wordsRDD.map(lambda x: (x,1))

word_counts = pairs.reduceByKey(lambda x,y: x+y)

Print some word-count pairs in the batch

word_counts.pprint()

IV. CONCLUSION

Customer Relationship Management (CRM) data may

provide a trove of valuable information. Two key

obstacles to tapping this information are 1) that the data

are frequently unstructured, and 2) that there is so much

data to analyze. This paper demonstrated that Natural

Language Processing (NLP) techniques could be used in

Big Data platforms like Spark to mine the unstructured

textual data and discover interesting and useful patterns

for business intelligence. Much work remains to be done,

particularly to automate the data collection and analysis.

ACKNOWLEDGMENT

The author thanks Matt Cumberlidge and Paul

Whitehouse from Elsevier’s eBusiness and Information &

Intelligence departments, and Ron Daniel and Darin

McBeath from Elsevier Labs for their assistance on this

project. The author thanks Myrna Gutfreund, Olivia

Gutfreund, Maxine & Sander Gutfreund, Les Gutfreund

and Lynn Malkin for their patience, love and support.

162©2017 Journal of Advanced Management Science

Journal of Advanced Management Science Vol. 5, No. 2, March 2017

REFERENCES

[1] Oracle Corp. (2012). RightNow Web Experience Data Sheet.
[Online]. Available:

http://www.oracle.com/us/products/applications/rightnow/overvie

w/index.html
[2] J. Dean and S. Ghemawat, “MapReduce: A simplified data

processing on large clusters,” in Proc. the 6th Symposium on

Operating Systems Design & Implementation, San Francisco, CA,
Dec. 6, 2004.

[3] J. Dean and S. Ghemawat, “MapReduce: A simplified data

processing on large clusters,” Communications of the ACM, vol.
51, no. 1, pp. 107-113, Jan. 2008.

[4] American National Standards Institute, Common Lisp, ANSI
X3.226:1994, ANSI INCITS 226-1994.

[5] D. Walker, “Standards for message passing in a distributed

memory environment,” Technical Report TM-12147, Oak Ridge

National Laboratory, Oak Ridge, TN, Aug. 1992.

[6] T. White, Hadoop: The Definitive Guide, 3rd ed. Sebastopol, CA:

O’Reilly, 2012, pp. 11-12.
[7] M. Bhandarkar, “MapReduce programming with Apache Hadoop,”

in Proc. 2010 IEEE International Symposium on Parallel &

Distributed Processing, Atlanta, GA, Apr. 2010.
[8] M. Grover, T. Malaska, J. Seidman, and G. Shapira, Hadoop

Application Architectures,1st ed. Sebastopol, CA: O’Reilly, 2015.

[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.
Stoica, “Spark: Cluster computing with working sets,” in Proc.

HotCloud 2010, 2nd USENIX Workshop on Hot Topics in Cloud

Computing, Boston, MA, 2010.
[10] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning

Spark, Lightning-Fast Big Data Analysis, 1st ed. Sebastopol, CA:

O’Reilly, 2015.
[11] C. Manning and H. Schütze, Foundations of Statistical Natural

Language Processing, 2nd ed. Cambridge, MA: MIT Press, 2000.

[12] A. M. Turing, “Computing machinery and intelligence,” Mind, vol.

59, no. 236, pp. 433-460, Oct. 1950.

[13] (Jan. 8, 1954). IBM Press Release. 701 Translator. [Online].
Available: http://www-

03.ibm.com/ibm/history/exhibits/701/701_translator.html

[14] C. Manning and H. Schütze, Foundations of Statistical Natural
Language Processing, 2nd ed. Cambridge, MA: MIT Press, 2000,

ch. 1.4.5, pp. 31-34.

[15] D. Jurafsky and J. H. Martin, Speech and Language Processing:
An Introduction to Natural Language Processing, Computational

Linguistics and Speech Recognition, 2nd ed. Upper Saddle River,

NJ: Prentice Hall, 2008.

Keith Gutfreund

is Disruptive Technologies

Director at

Elsevier Labs, Elsevier B.V.

Mr.

Gutfreund

received his

Bachelor of Science

in Electrical and Computer Engineering from
the University of Michigan, Ann Arbor, MI

USA.

At Elsevier Labs, he is involved in big

data, natural language processing

and search

engine design and application projects.

His

earlier academia

positions

include

Lecturer

at The National Engineering School of Tunis,
Tunisia, at Framingham State University,

Framingham, MA USA, and at Lawrence Technological University,

Southfield, MI USA.

Mr.

Gutfreund’s team entry

at the Fifth
International Workshop on Human-Computer Interaction and

Information Retrieval

(HCIR)

at Google

Headquarters,

Mountain View,

CA USA, earned second

place

in the 2011 HCIR

search engine
challenge.

In 2008, Mr. Gutfreundco-developed a 3D brain simulation

program that was featured on the United States National Public Radio

show “All Things Considered.” Mr. Gutfreund published “Internet
Content Filtering Protocol,” an Internet Engineering Task Force (IETF)

Draft Standard

as well as papers

on both hardware and software

engineering.

In 2001,

Mr. Gutfreund’s team

was granted a patent for

work at Alta Vista.

163©2017 Journal of Advanced Management Science

Journal of Advanced Management Science Vol. 5, No. 2, March 2017

