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Abstract—Using Apache SparkTM, Natural Language 

Processing (NLP), and text mining, the author’s team 

analyzed enterprise Customer Relationship Management 

(CRM) data to predict and combat premature sales attrition. 

NLP techniques were employed to identify critical patterns 

in unstructured CRM data fields. The Apache Spark big 

data engine and the DatabricksTM big data software as a 

service (SaaS) platform were then used to efficiently locate 

evidence of these patterns within large amounts of 

unstructured CRM data. New business reports are being 

generated from these patterns so that in-house support staff 

may proactively engage with customers. Future work will 

focus on automating these techniques to identify new 

problems and to quickly spot emerging trends. 

 

Index Terms—big data, apache spark, Natural Language 

Processing (NLP), Customer Relationship Management 

(CRM) software 

 

I. INTRODUCTION 

Like most large enterprises, Elsevier uses Customer 

Relationship Management (CRM) software to manage 

multi-channel communications between its customers and 

its in-house support teams.  

The customer data are collected from electronic forms 

(email, web) as well as from transcribed voice 

conversations. The data are then manually annotated and 

classified/categorized into a small number of fixed-value 

fields by trained customer service representatives. Both 

the classified/categorized data fields, as well as the large 

amount of free, unstructured text, are incorporated into an 

Oracle relational database.  

Elsevier has thousands of customers and voluminous 

CRM data, with new customer data arriving continuously. 

The Oracle database provides structured query search 

capabilities, although due to the large amount of data, this 

is limited to off-line batch mode processing of the 

structured data fields indexed by the database software.   

The author’s team is using big data engines, natural 

language processing (NLP), and text mining to improve 

the system in two important ways: 

1. Big Data techniques provide interactive access 

to the CRM data for search, experimentation, 

and analytics. 
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2. The large amount of unstructured data is mined 

to yield new analytics and predictive business 

intelligence. 

Big Data computation engines, NLP techniques, and 

text-mining algorithms allow us to discover new 

customer problems, identify trends, and proactively 

combat sales attrition. For example, we can discover 

problems hidden in transcribed free text conversations 

with phrases like: “I’m having trouble accessing resource 

X” or “My login isn’t working today”. Further, we can 

preemptively combat sales attrition by scanning 

conversations for patterns like, “I’m very unhappy with 

product (or feature or service) Y”, and then proactively 

engaging with the unhappy customers. 

Our goal was to examine raw customer interactions 

using tools and techniques that are not part of 

contemporary CRM packages, namely Big Data 

computation engines and natural language processing 

algorithms. We hoped to accomplish two objectives: 

1. Increase the amount of structured information 

that could be used for reporting, and 

2. Develop a trend spotting method to identify new 

problems early. 

A. The Enterprise CRM Dataset 

Elsevier customer data is stored in the Oracle 

RightNow CRM software product [1]. RightNow 

provides a repository for storing email, web and 

telephone customer interactions, and the repository may 

be queried interactively, using Oracle RightNow tools 

and interfaces, as well as programmatically, using custom 

database access software. The data is categorized upon 

entry and data extracts from the repository are provided 

to in-house analysts. Additionally, a variety of reports are 

generated from this data. The repository holds millions of 

customer interaction records. 

We experimented with a RightNow data sample 

containing approximately 231k customer interaction 

records. Each record in the dataset contained the fields 

shown in Table I. Three fields are of particular interest to 

this paper. The Disposition Level 1 and Disposition Level 

2 fields provide a two-level categorization of the 

customer incident, and a large, unstructured text field 

contains the historical communications between the 

customer and the support staff, as well as between 

individual support staff members during an incident. At 
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the beginning of this project, the large text field was not 

used for any analytical purpose. 

TABLE I.  RIGHTNOW  RAW DATA FIELDS 

Field Example 

ID 141031-006570 

Date (original) 31/10/2014 10.48 PM 

Date (normalized) 2014-10-31T00:00:00.000 

Date (closed) 2014-10-31T00:00:00.000 

Channel ID Web 

Product Scopus 

Subject The system doesn’t seem to be working 

Contact type Employee of academic institute 

Flag 0 

Queue Europe 

Mailbox NL Info 

Status Solved – No Response 

Text 

The system doesn’t seem to be working when I 

try to log on and I have a deadline soon and I 
need to reference my sources… 

Disposition Level1 Authentication 

Disposition Level2 Cannot login 

B. Big Data Tools 

A traditional non-Big Data approach to analyzing large 

datasets with millions of data records and unstructured 

text fields typically requires machines with powerful 

processors, large disks, and vast amounts of random 

access memory. This approach is costly in terms of hard 

ware and it does not scale beyond the largest machines 

that can be acquired for the task. Alternatively, 

contemporary Big Data techniques allow datasets to be 

distributed over many modestly sized machines and also 

allows for parallel processing on the distributed data. 

Apache
TM

 Hadoop
®
(http://hadoop.apache.org) is an open-

source Big Data software framework for distributed 

storage and processing of large data collections - it is the 

most well-known Big Data tool. Hadoop provides for a 

distributed disk-based file system and it supports the 

well-known MapReduce programming interface on this 

data. 

Jeffery Dean and Sanjay Ghemawat created 

MapReduce at Google in the early 2000’s and released it 

in 2004 [2], [3]. MapReduce is a combination of a 

software programming model and an implementation for 

processing and generating large data sets. The 

MapReduce programming library hid the “… messy 

details of parallelization, fault-tolerance, data distribution 

and load balancing.” [2], [3]. Simple MapReduce 

constructs yielded solutions that were both efficient and 

scalable and permitted automatic parallelization and 

distributed data processing. 

In 2004 Dean and Ghemawat cited examples of 

interesting programs easily expressed in MapReduce; we 

find that those are still relevant today. Two of these 

problems are: 

 Web document (word, frequency) pair 

computations to determine the most frequent 

and/or important words appearing in a document 

 Distributed sorting of key, record pairs 

We make use of both of these programming examples 

in this paper. 

MapReduce itself does not define a new programming 

model; rather, it is based on functional programming 

languages like Common Lisp [4] along with methods and 

message-passing systems that were first developed in the 

early 1990’s. At the First CRPC Workshop on Standards 

for Message Passing in a Distributed Memory 

Environment in 1992 [5], participants discussed the need 

of a system to address the most difficult aspects of 

distributed memory applications, viz.: 

1. Devising a correct parallel program 

2. Optimizing the program code for efficient and 

scalable performance. 

These same functional programming ideas and 

message passing techniques are intrinsic to MapReduce. 

Following upon Dean and Ghemawat’s MapReduce 

work, a first non-Google implementation of MapReduce, 

called Hadoop, was created in 2005 by Doug Cutting and 

Mike Cafarella. Hadoop was originally part of the Nutch 

search engine project [6].The Hadoop package includes 

both a distributed file system called the Hadoop 

Distributed File System (HDFS) and the MapReduce 

software library. Since 2006, Hadoop has been widely 

used for a variety of distributed computing problems. See 

[7], [8] for examples. 

While Hadoop works well for some problems, it 

suffers from some significant deficiencies. 

 The MapReduce programming paradigm is not a 

good fit for many programming abstractions 

 Hadoop MapReduce is made to run on distributed 

data stored on disk, the Hadoop Distributed File 

System (HDFS), and not in RAM 

These deficiencies eventually led to a new solution for 

Big Data processing, namely Apache Spark
TM

. 

Apache Spark is the newestopen-source software 

framework for big data [9]. Spark differs from Hadoop in 

two important ways: 

1. Spark’s distributed data collection is stored in 

RAM, providing for a much faster processing 

engine. 

2. Spark has built-in programming abstractions and 

libraries that make it a natural fit for applications 

using Structured Query Language (SQL), Extract, 

Transform Load (ETL) algorithms, and machine 

learning [10]. 

Apache Spark has several features and programming 

abstractions that were useful for this paper: 

In-memory RDDs: Spark distributes data across 

worker machines using fault-tolerant resilient distributed 

datasets (RDDs). Unlike Hadoop’s HDFS, Spark’s RDDs 

will use RAM but will spill data to disk as necessary. We 

were able to store much of our data in memory, which 

dramatically improved processing time. The following 
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two lines of Python code show loading a file into an RDD 

distributed across multiple worker machines and then 

printing the first 3 lines: 

 
>>>inputRDD = sc.textFile("/mnt/data.txt.gz”) 

>>>inputRDD.take(3) 

 

Results: 

- [u"141031-006570\t31/10/2014 10.48 PM\t2014-

10… 

- 014 04.52 PM\tWeb\tScopus\tThe system doesn't 

seem … 

- 4.52 PM\tWeb\tScopus\tThe system doesn't seem 

to be working… 

 

The “sc” above is the Spark context and represents the 

main program entry point for Spark functionality. The 

“/mnt/…” path is the data path to the file to be loaded. 

Lazy evaluation: Both Hadoop and Spark solve 

complex tasks by cascading multiple MapReduce 

operations. Spark’s lazy evaluation postpones actual code 

execution, thus permitting Spark to optimize the order of 

evaluation. Below is a simple example demonstrating 

Spark’s lazy evaluation: 

 
>>> inputRDD = sc.textFile("/mnt/ 

ScopusIncidentData.txt.gz") 

Command took 0.08s 

 
>>> inputRDD.count() 

Out[1]: 231671 

Command took 2.82s 

 

Above, Spark reports that the loading of a text file 

containing 231,671 lines into RAM from an external file 

system took only 0.08 seconds, whereas counting the 

number of lines in the file took 2.82 seconds. Spark 

delayed reading the text file until that data was actually 

required by the count () operation. 

Direct access to distributed data: Spark permits 

operations directly on RDDs, and provides abstractions to 

view RDDs as relational databases. Spark provides SQL 

operations (like SELECT * from table) as shown below: 

 
>>>rows = sqlContext.sql(‘select * from 

trouble_table’).take(2) 

>>> for x in rows: 

  print x 

Row(Message=u'onsider the ethical plagiarism 

[Reference: 141031-003226] We are escalating … 

Row(Message=u'onsider the ethical plagiarism 

[Reference: 141031-003226] Incident No: 141031-

003226 Mail forwarded from … 

Command took 5.03s 

 

Above, we used a Spark SQL Select * command to 

read and display two rows from an RDD. 

In this work we used Spark to deploy our data across 

multiple machines using Spark’s resilient distributed 

datasets (RDDs), we employed various MapReduce 

operations, and we used SQL abstractions and other 

operations directly on distributed data. 

Lastly, one significant challenge for both Hadoop and 

Spark is the lack of an out-of-the-box interactive, cloud-

based, big data framework. Lacking such a framework 

solution providers are required to repeatedly size and 

design the hardware infrastructure needed to manage 

(start, stop, monitor) the multiple hardware components 

within a MapReduce implementation. This is a lot of 

work. Fortunately, Databricks (http://databricks.com), a 

company formed by the Apache Spark inventors at the 

University of California, Berkeley, provides an 

interactive shell over a cloud-based Spark 

implementation that handles much of this work.  

Databricks manages the various hardware components of 

a MapReduce implementation, it provides an interactive 

shell for experimentation and development, and it 

provides tools to monitor and debug performance. Our 

Databricks implementation reported in this paper 

includesboth Scala and Python programs running Apache 

Spark on Amazon cloud instances. 

The Databricks shell is a notebook interface for 

interacting with Spark. The Databricks notebook allows 

the user to intermix basic markup display with Python, 

Scala, R, and SQL code. In Fig. 1 below, the Databricks 

notebook starts with a title “Spark Scopus Incident 

Program,” written in markup. Next, Python Spark code 

loads a CRM text file into an RDDand then uses a filter 

transformation to create a new RDD without the first 

header line in the data file. 

 

Figure 1.  Databricks Notebook screen shot with mark up and code. 

C. Natural Language Processing 

Natural Language Processing (NLP) is a blend of 

computer science, artificial intelligence, and 

computational linguistics [11]. NLP dates back to the 

1950s and 1960s with early experiments in language 

understanding [12] and translation programs [13]. 

We employed a couple different NLP techniques in 

this project. First, we implemented a concordancer [14] to 

extract sentences containing key phrases and to examine 

words preceding and following those key phrases. As an 

example, some selected output from our concordancer for 

the key phrase “trouble with” is shown in Table II. 

TABLE II.  CONCORDANCER OUTPUT 

ID Output 

141002-001480  
 

that you are having trouble with your purchase. In 

order to 

140929-007053  
 

scussed I am having trouble with advanced author 
searches 

140929-003433  
 

hear you are having trouble with access to Science 

Direct. 
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Next, we looked at single-word (unigram), two-word 

(bigram) and three-word (trigram) phrases preceding and 

following the key phrases supplied to the concordancer. 

In text analysis applications, n-grams language models 

(unigram, bigram, trigram …) along with Markov models 

are used to probabilistically predict words in a sequence 

[15]. In our application we are examining the different n-

grams for their significance in identifying important 

trends. 

The following Python code fragment is used to return a 

list of n-grams found within a body of text. Given a 

concordancer retrieval, we would invoke the Python 

makeNGrams () function twice, once for the words 

preceding the key phrase and once for the words 

following the key phrase. 

 
# Make n-grams 

#   n - size of n-gram 

#   text - string to break into n-grams 

# 

# Return list of n-gram strings 

import re 

def makeNGrams(n,text): 

  # Split the words, discard non-letters 

  words = text.split(" ") 

  filtered_words=[] 

  for w in words: 

    if re.match("[a-zA-Z]+", w): 

      filtered_words.append(w) 

  words = filtered_words 

 

  # Convert n-gram to space separated words 

  ngrams = [] 

  for i in xrange(len(words) -(n-1)): 

    gram = '' 

    for j in xrange(n): 

      gram += words[i+j] + ' ' 

 

    # Returning list of ngram strings 

    ngrams.append(gram.strip()) 

 

  return ngrams 

 

Frequently occurring n-grams were then further 

investigated for trend analysis. 

II. APPROACH 

Our team analyzed the unstructured text field in each 

data record and with the goal of identifying patterns and 

the early discovery of new customer problems. We 

typically started with an intuition like: “I’m having a 

problem with feature X” and then enhanced it to: “I’m 

having trouble with feature X” and “I’m having difficulty 

with feature X”. We employed software regular 

expressions to assist with the pattern matching, so that the 

above pattern would be similar to: “I’m having 

(problem*|trouble|difficult*) (with|doing) X”. The 

vertical bar ‘|’ indicates the logical disjunction (“OR”) of 

multiple choices, e.g. the regular expression “(with|doing)” 

matches sentences containing the word “with” or the 

word “doing”. The asterisk ‘*’ matches zero or more 

letters, e.g. “difficult*” matches the words “difficulty 

“and “difficulties”. The “\d” matches a digit, e.g. “IE\d” 

would match IE7, IE8, or IE9. After applying these 

regular expressions against the text field in all records, 

we then count the occurrences of the different values of X 

and display the most frequently occurring values. These 

matches would be what our users were most often 

reporting as problems, as troublesome, or as difficult. 

TABLE III.  SAMPLE PATTERNS TO IDENTIFY NEW PROBLEMS 

Browser Issues 

browser | firefox | safari | chrome | internet explorer | IE\d    

 

Legal, Ethical Issues 

plagiarize | plagiarism 

cheat | cheating 

legal (action | proceeding) 

 

Products 

Reaxys 

Scopus 

ScienceDirect 

SciVal 

SciVerse 

 

Cut off Access 

authentication 

restore 

remove 

suspen(d | sion) 

delete(d) 

deactivate 

disable 

excessive usage 

 

TABLE IV.  SAMPLE PATTERNS TO IDENTIFY TRENDS 

Trend: Broken or Not Working  
(not working now) | (no longer working) | (was working) 
((does not)|doesn’t) work 
(is | are | now) broken 
(can’t | can not | can no longer) 
having (trouble | difficulty | problem) with 
(is now) | (has been)  | (is still) unavailable 
(serious | substantial | significant | real) (trouble | difficulty | problem) 

 
Trend: Customer Satisfaction 
not happy 
(very | extremely | serious) (unhappy | upset | dissatisfied) 

 
Trend: Customer Asking for Help for Urgent Matters 
in proximity of “urgent” or “serious”: (please help) | (please fix) | 

(need help) 

 
Table III shows some sample patterns we employed to 

identify new problems in the data. Here, one interesting 

pattern we discovered arose from customers reporting 

legal and ethical issues, including plagiarism and 

cheating. A second pattern attempted to identify 

additional products that were involved in a customer 

complaint. A third pattern attempted to classify the 

reasons why a customer’s account was deactivated. For 

example, excessive usage might indicate users crawling 

the product for content. These problems had not 

previously been tracked. 
Table IV shows some sample patterns we employed to 

identify new trends in the data. Our hope is that these 

patterns will help us to quickly identify and address 

emerging issues leading to customer dissatisfaction. For 

example, features that suddenly stopped working could 
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be identified in text matching the expression: (X not 

working now) | (X no longer working) | (X was working).  

Customer dissatisfaction could be detected in text 

matching the expression: (very | extremely | serious) 

followed by (unhappy | upset | dissatisfied) 

Once we have selected a promising pattern, we then 

use the concordance and our n-gram software to identify 

key values for a trend or issue. The Databricks Spark 

platform provides an interactive platform that facilitates 

easy experimentation, structured query language (SQL) 

lookup operations, and some basic visualizations.   

Fig. 2 shows a Databricks visualization of the 

distribution of Channel values in reported incidents over 

different time periods. 

Fig. 3 shows a Databricks visualization of the final 

disposition of customer problems reported over time. 

 

Figure 2.  Databricks visualization of reporting channel over time. 

 

Figure 3.  Databricks visualization of problem disposition over time. 

III. NEXT STEPS 

Now that we have new sets of patterns to identify 

problems and trends, we are in the process of migrating 

these to the RightNow CRM reporting system as standing 

queries and prepared statements. These will then be 

included in our regular analysis. 

One powerful next step is to automate both the 

ingestion and the analysis of CRM data. As new customer 

reports are transcribed and as customer emails arrive, new 

data records are automatically added to the existing CRM 

system.   

Nevertheless, appending new data records to a Spark 

dataset requires a slightly different approach. Spark’s 

Resilient Distributed Datasets (RDDs) are immutable–

once created, an RDD is not modifiable. This prevents us 

from appending new data to an existing RDD. 

Nevertheless, if we treat the newly arriving data as a data 

stream; Spark provides a programming engine and 

abstraction that transforms a data stream into a sequence 

of RDDs, as show in Fig. 4. Spark calls this abstraction a 

discretized stream (DStream).   

 

Figure 4.  Spark Discretized Stream (DStream) as batch RDDs. 

The sequence of RDDs that make up a DStream may 

be processed individually as shown in Fig. 4 or a 

DStream may be combined with an RDD. The Spark 

Python demonstration code below shows a map-reduce 

word frequency computation being carried out on each 

arriving batch of CRM data arriving at a TCP socket. 

 
from pyspark.streaming import StreamingContext 

 

# Read and process CRM data stream every 60sec 

stream_sc = StreamingContext(sc, 60) 

records= stream_sc.socketTextStream(host,port) 

 

# Separate tab-delimited record into fields 

fieldsRDD = records.map(lambda x: x.split(‘\t’)) 

 

# Operate on the text field of CRM data 

textRDD = fieldsRDD.map(lambda x: x[10]) 

 

# RDD of the words in the text field 

wordsRDD=textRDD.flatMap(lambda x: x.split(‘ ‘)) 

 

# Frequency of words appearing in this batch RDD 

pairs = wordsRDD.map(lambda x: (x,1)) 

word_counts = pairs.reduceByKey(lambda x,y: x+y) 

 

# Print some word-count pairs in the batch 

word_counts.pprint() 

IV. CONCLUSION 

Customer Relationship Management (CRM) data may 

provide a trove of valuable information. Two key 

obstacles to tapping this information are 1) that the data 

are frequently unstructured, and 2) that there is so much 

data to analyze. This paper demonstrated that Natural 

Language Processing (NLP) techniques could be used in 

Big Data platforms like Spark to mine the unstructured 

textual data and discover interesting and useful patterns 

for business intelligence. Much work remains to be done, 

particularly to automate the data collection and analysis. 
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