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Abstract—We study on stochastic models of emergent 

enterprise systems. Our focus is on developing and 

investigating efficient analytical and numerical 

methodologies to evaluate the overall performance of 

emergent enterprise systems. As a multi-stage supply chains, 

an emergent enterprise system can be modeled as an 

interacting particle system. Under some reasonable 

assumptions, the overall performance can be estimated 

through a homogeneous Markov chain. The stationary 

distribution of the Markov chain can be derived analytically, 

as well as the overall system performance can be predicted 

efficiently and accurately.  

 

Index Terms—supply chain management, interactive 

particle, emergent enterprise system, Markov chain, multi-

stage supply chain 

 

I. INTRODUCTION 

The organizational environment in business these days 

is characterized by rapid change driven by fierce 

competition in the marketplace and evolving technologies 

and customer preferences. To cope with the increased 

uncertainty and stringent requirements placed on them, 

companies are teaming up, forming partnerships and 

alliances, joining efforts to bring better quality products, 

faster and cheaper to the market. As a result, the 

performance of any one of these companies is linked to 

the performance of the others, and, more specifically, to 

the overall performance of the system, which we call the 

emergent enterprise, as is observed by the final customer, 

the consumer. Thus, the emergent enterprise is composed 

of a number of independent agents that make distributed 

decisions but have at least one common goal: overall 

system performance. Consequently, each of these agents 

needs to estimate the performance of the distributed 

enterprise in order to evaluate the possible outcomes of 

their actions and make decisions accordingly. The main 
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objective of this paper is to develop models of the 

emergent enterprise that capture the independent behavior 

of each of the agents involved as well as the effect of the 

interactions among agents, in order to accurately predict 

the dynamics of the organization and the performance of 

the system in the long run.  In addition, these models will 

provide insight into understanding the mechanisms that 

result in effective alliances and organizational design. 

In many ways the study of emergent enterprise systems 

is analogous to studying a collection of molecules or 

subatomic particles. Each particle has physical 

characteristics, similar to the capabilities of an entity in 

the enterprise. Particles interact with each other by 

exerting different force fields, similar to the interaction 

between organizations via transfer of material or 

information. Particles coalesce into groups, such as 

molecules or paired particles, based on these interactions, 

similar to the coalition formation between the 

organizations in an enterprise. The mass properties of the 

collection of particles such as temperature or pressure 

depend on the interactions between particles and the 

environmental conditions, similar to the overall behavior 

of the enterprise, which depends on the interactions 

between organizations and the operating environment. 

In what follows, we model the dynamics of the supply 

chain as an interacting particle system and determine its 

limiting behavior [1]-[8].  For that purpose, we first need 

to define the interaction between the different agents and 

the decision process associated with each of them.  We 

start by considering a simple two-stage supply chain. We 

later demonstrate how to extend our approach to three 

stages and, by similar arguments, its applicability to any 

number of stages. 

II.  TWO-STAGE SUPPLY CHAIN MODEL 

Under some reasonable conditions, the Two-Stage 

Supply Chain can be modeled as a homogeneous Markov 

chain with finite state space. If the buyers’ ordering 
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quantities are constant and independent of time, the 

stationary probability distributions, the limit probabilities 

of buyers order from suppliers, are successfully derived.  

 

Figure 1.  Two-stage supply chain model. 

1. Without loss of generality, we focus on the 

performance of a single supplier, say supplier A. Let N be 

the number of potential buyers of its output. The demand 

for buyer i at time t is a random variable, )(tDi
 which we 

assume to be independent and identically distributed over 

time. Given its demand and inventory policy, buyer i will 

decide the quantity )(tQi
to order from supplier A or any 

of the competing suppliers.  

on two factors: (a) its performance or utility value (based 

on price, quality, service, field support, etc.), and (b) its 

market share. For example, a company that currently 

orders components from supplier A may switch to a 

supplier B that serves a greater portion of the market or it 

may decide to buy from the supplier providing the best 

service. To account for these two aspects, we introduce 

parameters ,10,,...2,1,  ii Ni  , to describe the 

importance placed on each factor by the corresponding 

buyer.  Specifically, buyer i bases her decision at time t 

on the market share of supplier A with probability i and 

on the performance (or utility) of supplier A with 

probability 1- i . The performance rate or utility value 

that buyer i associates with supplier A is represented by a 

parameter i , 10  i .  We also need to model how 

supplier performance is affected by its overall demand: it 

will improve as demand increases due to economies of 

scale, but deteriorate when demand reaches its capacity 

limit. Thus, the demand from a buyer is not always an 

increasing function of the total market share of supplier A. 

Once the supplier reaches its peak utilization, it will 

become less attractive. To incorporate this effect, we 

assume that the attractiveness of a buyer i to a supplier is 

a concave function, )(rfi
, of the supplier's market share r. 

For example, ))/1(1()( 2CrCrfi  , where C is the 

optimum share given the supplier's capacity; )(rfi
 is 

increasing when r < C, but )(rfi
is decreasing when 

Cr  . We call buyer i a Concave Buyer if )(rfi is a 

concave function and a Linear Buyer if it is linear. Finally, 

we consider one additional parameter 10,  ii  , which 

represents the rate at which buyer i would break an 

ongoing relationship with supplier A. 

captures enough details of the decision making processes 

of the individual companies as well as the interaction 

among them, and allows us to determine the evolution 

and long-term stability of supply chain relationships. In 

the stylized analytical model we assume the overall order 

quantity to be known and constant over time, that is, 

 )()( tDEtQ ii   for all t.   

system, we define binary random variables: 

  , at tim supplier  from orders buyer  if ,1

otherwise ,0

tAi

iY 
Note that 

this would be equivalent to an interacting particle system 

in which a site representing supplier A has N neighboring 

sites; there is a particle at site i, Ni ,...1  if buyer i 

favors supplier A or, otherwise, the site is empty. 

Then,    1)()(  tYPtYE ii
 is buyer i's ordering rate 

from supplier A at time t. The expected amount that buyer 

i orders from supplier A at time t is given by 

  )()()( tQtYEtQ ii

A

i   

Notation Summary 
 

N:  number of buyers; 

)(tDi
: demand observed by buyer i at time t; 

)(tYi
: 1 if buyer i is purchasing from supplier A at time t, 

0 otherwise; 

)(tQi
: overall order quantity of buyer i at time t (from all 

suppliers); 

)(tQA

i
: expected quantity ordered by buyer i to supplier 

A at time t; 

i : a factor to choose supplier A; 

i : the performance rate or utility value of supplier A as 

observed by buyer i; 

)(rfi
: buyer i's rate of attraction to supplier A based on 

its market share, r; 

,i : the rate at which buyer i breaks a relationship with 

supplier A; 

)(tP : the transition matrix at step t; 

tP : the instant probability vector at time t; 

ip : the limiting probability (chance) of buyer i to 

purchase from supplier A. 

following transition probabilities in the system.  
 

 ijNjytYtYtYP jjii  ,1)1(,0)1(|1)( ,
  

ii

ij

jjii tQtQyf  )1()1(/)1( 







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


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Consider  the two-stage  supply chain  described in Fig. 

A  buyer makes a decision to choose a supplier based 

Our objective is to  develop an analytical model that 

To model  this problem  as an interacting particle 

Given these parameters and notation, we define the 
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where )()(
1

tQtQ
N

j j 
  and  1,0iy .  

Since )(),...,(),( 21 tYtYtY N
 are independent given that  

)1(),...,1(),1( 21  tYtYtY N
 are known, we have  

 NiytYNjytYP iijj ,...,1,)1(|,,1,)( '     

 



N

j

iijj NiytYytYP
1

' ,...,1,)1(|)( . 

  0,)(,),()( 1  ttYtYtY N  is  a Markov chain 

with a state space 

    NiyyyyZ iN ,...,1,1,0,,,1   , a total of  

N2  elements. Let the transition probability matrix at time 

t be )(tP  and let the initial vector of buyer choices 

be  00

1

0 ,..., Nyyy  ; that is, the initial probability vector 

0P  is 


,)0,,0,1,0,,0(

statesother statesother 

0

0

T

y

P




  

And the probability vector at time t is given by  

.)1()1()()( 01 PPtPtPPtPP tt   
 

Observe that when 0i  and 0i , buyer i would 

never order from supplier A. This is true since 0i  

implies that buyer i bases her decisions solely on the 

utility value of the supplier, which is given by i . For 

convenience, we assume that i  and i cannot be zero 

simultaneously. Consequently,  0),( ttY  is a non-

singular Markov Chain with a finite state space, and 

homogeneous since we consider the ordering quantities of 

buyers to be deterministic and constant over time. Thus, 

there exists a stationary probability 

vector  N21 ,,   . 

,)1()1()1()( 00

Ttt

t PPPPtPtPP    

for any initial probability vector 0P . We obtain the 

probability vector at any time t. In theory, we can derive 

the stationary probability vector from the above Equation.  

for supplier A? For example, when N=2, the state 

space       )1,1(,0,1,1,0,0,0Z . The stationary probability 

distribution is   
)1,1()0,1()1,0()0,0( ,,,   . Therefore the 

chance of buyer 1 to purchase from supplier A in long 

term is  

   .1)(lim )1,1()0,1(11  


tYPp
t

 

If the overall quantity  )()( tDEtQ ii   is a constant in 

time t, say iQ , the stationary market shares for supplier A 

from buyer 1 is  

111 QpQ A  . 

The transition matrix may be different.  Many factors are 

involved in deriving the transition probabilities, such as 

delivery time, supplier’s capacity, product’s price, 

scoring cards, and supplier’s past performance.  

III. TWO-STAGE BATCH SUPPLY CHAIN MODEL 

In many cases in a supply chain system, there are 

capacity limits for all suppliers. Sometimes, buyers do 

not need all orders to be delivered at the same time in 

order to save inventory costs. Buyers may use different 

strategy to find the best (optimal) supplier, such as using 

auction to find a best supplier, selecting two suppliers at 

the same time to compete to drop the price down. 

Therefore a more flexible model is needed. In the 

assumption of the basic Two-Stage Supply Chain model, 

a single buyer only can order his/her all demand from one 

and only one supply. We consider each buyer is a batch 

of buyers. In the previous model, we simply replace each 

buyer by several buyers in theory.  This model allows 

each buyer to order all his/her items from different buyers. 

Under the same conditions (assumptions), the stationary 

probability distributions are derived.  

In the previous section in the Fig. 1, we can 

decompose the buy 1 into two sub buyers. In other words, 

the buyer 1 is a batch of two buyers. The demand 

observed by buyer 1 at time t, )(1 tD , also can be 

decomposed into two sub demands  )(11 tD  and )(12 tD  

corresponding to sub buyer 1-1 and buyer 1-2 with  

)(1 tD  = )(11 tD  + )(12 tD . 

See the following Fig. 2 for details. Similarly we can 

decompose any buyer into several sub buyers.  

 

Figure 2.  Two-stage supply batch chain model 
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How do we calculate the market shares in long run 

In general  a  more accurate model can be derived. 



Fig. 2 is a two-stage supply chain too. All results we 

have derived in the previous section can be applied to this 

section. 

IV. THREE-STAGE SUPPLY CHAIN MODEL 

We use the decomposition method to extend the results 

of the Two-Stage Supply Chain Mode to the Three-Stage 

Supply Chain Model. Similarly, we assume that all 

ordering quantities are time-independent constant. We 

use the two-stage supply chain model twice with 

decomposition. In the first sub model, we only consider 

manufacturers and buyers by using the results of the two-

stage supply chain model, we derive the stationary 

distributions, which are probabilities that the stationary 

chance of buyers ordering from manufactures. In the 

second sub model, we use the results of the two-stage 

model again on the Suppliers and Manufactures. Here we 

treat all manufacturers in the three-stage supply chain 

model as buyers as in the two-stage supply chain model. 

In the two-stage model, we need to know the time-

independent constant demands to derive the stationary 

probability distributions. The time-independent stationary 

demands of Suppliers are calculated by the sum of total 

expected demands from each Buyer. For example, we 

consider a single supply Wal-Mart Warehouse. Its 

expected demand from each buyer is the product of the 

stationary probability and the buyer’s demand. The sum 

of all expected demands forms the stationary demands of 

the Wal-Mart Warehouse. 

 

Figure 3.  Three-Stage supply chain model 

 

Figure 4.  Two-Stage supply chain sub-model (I) 

 

Figure 5.  Two-stage supply chain sub-model (II) 

V. N-STAGE SUPPLY CHAIN MODEL 

Extension to the N-Stage Supply Chain Model is 

straightforward under the similar model assumptions. We 

decompose the N-Stage Supply Chain Model into N-1 

sub-Two-Stage Supply Chain Models. We derive the 

stationary probability distributions and stationary 

demands from right hands side to left hand side (high 

level to low level). 

 

Figure 6.  N-stage supply chain model 

 

Figure 7.  Two-stage supply chain model (I) 

 

Figure 8.  Two-stage supply chain model (N) 

VI. NETWORK SUPPLY CHAIN MODEL 

We consider a more general Network Supply Chain 

Model. More precisely it is a Directed (one-way) 

Network Supply Chain. Let us consider a similar Three-

Stage Supply Chain first. In this new model, we allow all 

buyers of Level 4 to skip all supplier of Level 3 to order 

items directly from manufactures of Level 2. We 

construct an augmented Three-Stage Supply Chain Model. 

In this new augmented model, we add all Manufactures 

of Level 2 into Suppliers group of Level 3. This 

augmented Three-Stage Supply Chain Model also can be 

decomposed into two sub-Two-Stage Supply Chain 

Models. In the first sub-Two-Stage Supply Chain Model, 

We derive all stationary probability distributions. For 

example, the stationary probabilities of Wal-Mart 

ordering items directly from manufacture Virginia 

Produce Center without going through any Supplier. In 

the second sub-Two-Stage Supply Chain Model, we have 
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all Manufactures on both sides (Level 2 and Level 3). We 

treat all manufactures in the augmented Level 3 as 

absorbing states. The transition probability of each 

manufacture on the augmented Level 3 to the same 

manufacture on the Level 2 is one (as defined as an 

absorbing state).  

Similarly we extend this Three-Stage Directed 

Network Supply Chain Model into the N-Stage Directed 

Network Supply Chain Model. We construct a New 

Augmented N-Stage Supply Chain Model. Starting from 

left hand side to the right hand side, we add all 

components of Level 1 to Level 2.Then we add the 

augmented Level 2 to Level 3. Then we add the 

augmented Level 3 to Level 4. We repeat the same 

procedure. Finally we add the augmented Level N-2 to 

Level N-1. 

 

Figure 9.  Three-Stage directed network supply chain model 

 

Figure 10.  Three-Stage augmented supply chain model 

VII. SUMMARY AND CONCLUSION 

The development of models of the emergent 

enterprises capture the independent behavior of each 

agent involved, as well as the effect of the interactions 

among agents, in order to predict the performance of the 

system in the long run.  In addition, these models will 

provide insight into understanding the mechanisms that 

result in effective alliances and organizational design. 

To incorporate the interaction between various agents 

into our models, we formulate the problem as an 

interacting particle system. In many ways the study of 

emergent enterprise systems is analogous to studying a 

collection of molecules or subatomic particles. Each 

particle has physical characteristics, similar to the 

capabilities of an entity in the enterprise. Particles interact 

with each other by exerting different force fields, similar 

to the interaction between organizations via transfer of 

material or information. Particles coalesce into groups, 

such as molecules or paired particles, based on these 

interactions, similar to the coalition formation between 

the organizations in an enterprise. The mass properties of 

the collection of particles, such as temperature or pressure, 

depend on the interactions between particles and the 

environmental conditions, similar to the overall behavior 

of the enterprise, which depends on the interactions 

between organizations and the operating environment.  

Most of the research on interacting particle systems has 

focused on the asymptotic behavior of the system, 

describing the class of invariant measures for the process 

and determining the domain of attraction of each 

invariant measure. The results obtained in this area could 

be used to predict the long-term performance of the 

emergent enterprise, if modeled appropriately. 
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