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Abstract— Data Envelopment Analysis (DEA) is a method 

measuring the relative performance of a group of decision 

making units (DMUs) which consume a number of inputs 

and produce several outputs at different quantities. In spite 

of its popularity, DEA still endures some kinds of 

shortcomings. For instance, DEA lacks the discriminating 

power among efficient DMUs. In this paper, we introduce a 

method which utilizes goal programming and discriminant 

analysis to solve the multiple criteria DEA model. The 

proposed method develops a classification function which 

separates efficient and inefficient DMUs and generates an 

efficiency ranking for all DMUs. Furthermore, it allows 

decision-makers to incorporate a priori information about 

the factor weights via proportional virtual weights 

restrictions or other forms of weights restrictions. 

Performance of the proposed method is illustrated by two 

real applications, which have been studied in the literature.  

 

Index Terms— common set of weights, data envelopment 

analysis, discriminant analysis, integer linear programming, 

multiple criteria data envelopment analysis  

I. INTRODUCTION 

With n decision making units, DMUj (j = 1, 2, . . . , n), 

and each has m inputs xij (i = 1, . . . , m) and s outputs yrj 

(r = 1, . . . , s), the CCR model [1] can be stated as 

follows:  

 

𝑀𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑜                                                                 (1)

𝑠

𝑟=1

 

 

s. t.  ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

−  ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

 ≤ 0, 𝑗 = 1, . . . , 𝑛, (2) 

∑ 𝑣𝑖

𝑚

𝑖=1

𝑥𝑖𝑜 = 1,                                                        (3) 

 

where ur, vi ≥ 0, r = 1, . . . , s; i = 1, . . . , m. 

A common problem in DEA is that all efficient DMUs 

have the same efficiency ratio; therefore, they are not 

fully ranked. Some studies [2-10] propose different 

approaches to provide further discrimination among 

efficient DMUs. 

A recent model proposed by Lam [11] uses 

discriminant analysis (DA) to rank DMUs in DEA. 

Recently, multiple criteria DEA analysis models have 

been received some attentions in the literature. Reference 

[12] applies multi-objective linear programming approach 

to solve the resource allocation problem in DEA. 

Reference [13] examines problem of inconsistency in 

several existing goal programming multiple criteria DEA 

models. Reference [14] applies multiple criteria sorting 

methods based on DEA and also Interval Analytic 

Hierarchy Process to evaluate research and development 

projects. Reference [15] suggests using a larger value for 

the lower bound on weights to improve discriminating 

power in multiple criteria DEA models.  

This paper proposes a new goal programming (GP) 

and DA model to rank DMUs in DEA using common 

weights. The new model has a few advantages over the 

existing models: (i) it provides the minimum 

misclassification solution when separating efficient and 

inefficient DMUs in DEA using common weights, (ii) it 

allows decision-makers to incorporate their preferences 

or a priori information using virtual weights restrictions 

or other forms of weights restrictions, and (iii) it provides 

an efficiency ranking for all DMUs in a DEA study. A 

new GP and DA model is introduced in Section II. In 

Section III, the new model is applied to two applications, 

which have been studied in the literature. Finally, a 

conclusion is given in Section IV. 

II. A NEW GOAL PROGRAMMING AND DISCRIMINANT 

ANALYSIS MODEL  

A. Model Formulation 

In this paper, we propose using GP and DA to enhance 

the discriminating power in DEA. The proposed method 

requires two steps. In the first step, the CCR model is 

used to determine the efficiency of each DMU. Then 

based on their efficiencies, DMUs are classified as either 

efficient (E) or inefficient ( E ). In the second step, 

decision-makers incorporate a priori information using 

weights restrictions in the model. The model then 

develops a discriminant function separating efficient and 

inefficient DMUs. Normalized scores are used in the 

model. After normalization, the mean score of each input 
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and the mean score of each output are equal to one. Once 

the discriminant function is developed, it can be used to 

preserve an efficiency ranking of all DMUs. 

Our proposed preemptive mixed integer linear goal 

programming and discriminant analysis model (GPDA) 

for DEA is stated as follows: 

 

Min 𝑃1 (∑ 𝑧𝑗

𝑛

𝑗=1

) + 𝑃2(𝑏) + 𝑃3(𝑑) + 𝑃4(ℎ)                   (4) 

 

s. t.  ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

+ 𝑀𝑧𝑗 ≥ 0, 𝑗 ∈ 𝐸,                (5) 

 

∑ 𝑢𝑟𝑗

𝑠

𝑟=1

−  ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

− 𝑀𝑧𝑗 ≤ −𝜀, 𝑗 ∈ 𝐸,                  (6) 

 

∑ 𝑣𝑖

𝑚

𝑖=1

= 1,                                                                       (7) 

(1 − 𝛼𝑘)𝑢𝑘 − ∑ 𝛼𝑘𝑢𝑟

𝑠

𝑟=1,𝑟≠𝑘

+ 𝑏 ≥ 0, 𝑘 = 1, . . . , 𝑠,   (8) 

𝑣𝑙 + 𝑑 ≥ 𝛽𝑙 , 𝑙 = 1, . . . , 𝑚,                                              (9) 

 𝑢𝑘 − 𝛾𝑢𝑝 + ℎ ≥ 0,                                                       (10) 

where is a very small positive number; M is a very large 

positive number; 0 ≤ 𝛼𝑘 < 1, 𝑘 = 1, . . . , 𝑠;  0 ≤ 𝛽𝑙 < 1,
𝑙 = 1, . . . , 𝑚;  𝑧𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛;  b ≥ 0; d ≥ 0; h ≥ 0; 

γ≥ 0; ur ≥ 0, r = 1, . . . , s; vi ≥ 0, i = 1, . . . , m. 

B. Model Discussions 

In (5), for any DMUj in E, if the efficiency ratio of 

DMUj is less than one, or ∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1 −  ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚
𝑖=1  <

0,  then the value of zj must equal one. Similarly, in (6), 

for any DMUj in E , if the weighted sum of output is not 

less than the weighted sum of input by a magnitude of  , 

then the value of zj must equal one. In other words, an 

efficient DMU must satisfy ∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1 −  ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚
𝑖=1  ≥

0;  otherwise, it will be counted as a misclassification in 

GPDA. Notice that, the condition ∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1 −

 ∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1  ≥ 0,  can be rewritten as 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≥ 1,  for 

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 > 0.  Similarly, an inefficient DMU should 

satisfy 
∑ 𝑢𝑟𝑦𝑟𝑗

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

< 1,  otherwise, it will be counted as a 

misclassification in GPDA. This classification scheme is 

similar to classical DEA except that efficiency ratios are 

allowed to be greater than one. The super efficiency 

model [16] also allows the efficiency ratio of an efficient 

DMU under evaluation to be greater than one. However, 

a main difference is, our proposed model allows all 

efficient DMUs to have their efficiency ratios greater 

than one instead of allowing only one efficient DMU to 

have this flexibility as in the super efficiency model. In 

our model, any inefficient DMU, which has larger than or 

equal to one efficiency ratio will be classified as a 

misclassification. The primary goal in (4) minimizes the 

sum of zj, or in other words, it minimizes the number of 

misclassifications according to the classification scheme 

E and E obtained from the CCR model in DEA.  

The constraint  ∑ 𝑣𝑖
𝑚
𝑖=1 = 1, is a normalization 

constraint. This constraint in virtual weights form can be 

expressed as 
1

𝑛
∑ ∑ 𝑣𝑖𝑥𝑖𝑗 =  1.𝑚

𝑖=1  𝑛
𝑗=1 However, with 

normalized data the average score of input i, (
1

𝑛
∑ 𝑥𝑖𝑗),𝑛

𝑗=1   

is equal to 1, therefore, the constraint becomes  ∑ 𝑣𝑖
𝑚
𝑖=1 =

1.  
The constraints (1 − 𝛼𝑘)𝑢𝑘 − ∑ 𝛼𝑘𝑢𝑟

𝑠
𝑟=1,𝑟≠𝑘 + 𝑏 ≥ 0,

𝑘 = 1, . . . , 𝑠,  where 0 ≤ 𝛼𝑘 < 1,  are derived from 
𝑢𝑘

∑ 𝑢𝑟 𝑠
𝑟=1

≥ 𝛼𝑘, 𝑘 = 1, . . . , 𝑠.  In addition, αk can be defined 

as the minimum shares of importance a decision-maker 

wants to maintain for output k with respect to the total 

output. The variable b is a deviational variable. With 

normalized data, the output weight uk can be viewed as 

the virtual of the ‘average’ of output k since the mean of 

output k is one, therefore, (
1

𝑛
∑ 𝑦𝑘𝑗

𝑛
𝑗=1 ) 𝑢𝑘 = 𝑢𝑘 .  

Similarly the constraints, 𝑣𝑙 + 𝑑 ≥ 𝛽𝑙 , 𝑙 = 1, . . . , 𝑚, are 

derived from the conditions, 
𝑣𝑙

∑ 𝑣𝑖 𝑚
𝑖=1

≥ 𝛽𝑙 , 𝑙 = 1, . . . , 𝑚,  

where 0 ≤ 𝛽𝑙 < 1,  and ∑ 𝑣𝑖
𝑚
𝑖=1 = 1. 

Furthermore, βl represents the minimum shares of 

importance a decision-maker wants to maintain for input l 

with respect to the total input. The variable d is a 

deviational variable. The constraint, 𝑢𝑘 − 𝛾𝑢𝑝 + ℎ ≥

0, where γ ≥ 0 and h is a deviational variable, for any pair 

of outputs {k, p}, is a modified version of the constraints 

in the assurance region analysis suggested by [17]. 

Similar constraint can be applied to any pair of inputs. 

Notice that decision-makers do not need to include all 

the suggested weight restriction constraints only if the 

constraints are necessary. They can include one set or 

only a subset of each type of the suggested weight 

restriction constraints in GPDA. Alternatively, decision-

makers can also include other types of weight restriction 

constraints if deemed necessary. For instance, constraints 

on the upper bounds of factor weights can also be 

included. Examples of applying weight restrictions in 

GPDA are illustrated in Section III .  

GPDA is solved as a preemptive goal programming 

problem. The primary goal is to minimize the number of 

misclassifications of DMUs in E and E . Decision-makers 

can rank order other goals according to their importance. 

The values of ur and vi are used to compute efficiency 

ratios of all DMUs. A priori available information 

gathered from expert opinion or preferences from 

decision-makers can be incorporated in GPDA. The use 

of weights restrictions in DEA has been discussed by 

many researchers. In the literature, the proposed weights 

restrictions are generally applied to each individual DMU 

under evaluation. However, in GPDA weights restrictions 

are applied to a common set of weights for all DMUs.  
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TABLE I. NORMALIZED DATA OF EXAMPLE 1 

 Input Output 

DMU I.L.F. W.F. INV. G.I.O. P.&T. R.S. 

Beijing 2.932 3.232 4.155 3.192 3.704 3.633 

Changchun 0.834 0.746 0.583 0.636 0.643 0.983 

Changsha 0.482 0.404 0.478 0.344 0.274 0.753 

Chengdu 1.247 1.240 0.996 0.988 0.822 1.244 

Chongqing 2.059 1.806 1.210 1.395 1.034 1.486 

Dalian 1.010 1.149 1.138 1.014 1.059 1.053 

Fuzhou 0.426 0.393 0.594 0.299 0.240 0.631 

Guangzhou 1.355 1.585 2.036 1.552 1.501 2.375 

Guiyang 0.466 0.412 0.439 0.347 0.397 0.318 

Hangzhou 0.913 0.865 0.689 0.976 0.868 1.166 

Harbin 1.282 1.451 0.797 0.904 0.678 1.095 

Hefei 0.453 0.387 0.325 0.363 0.340 0.422 

Hohot 0.270 0.228 0.244 0.171 0.180 0.242 

Jinan 0.702 0.619 0.449 0.594 0.594 0.693 

Kunming 0.734 0.684 0.648 0.591 0.641 0.610 

Lanzhou 0.955 0.958 0.616 0.781 0.766 0.611 

Lhasa 0.012 0.008 0.042 0.002 0.002 0.113 

Nanchang 0.620 0.525 0.245 0.426 0.335 0.472 

Nanjing 1.122 1.095 1.277 1.125 1.133 1.073 

Nanning 0.301 0.000 0.210 0.237 0.759 0.356 

Ningbo 0.360 0.284 0.418 0.431 0.406 0.814 

Shanghai 5.500 6.418 5.503 9.067 10.239 5.202 

Shenyang 1.826 1.706 1.139 1.368 1.067 1.441 

Shenzhen 0.091 0.144 1.596 0.105 0.062 0.789 

Shijiazhuang 0.662 0.565 0.394 0.610 0.513 0.496 

Taiyuan 1.020 0.899 0.980 0.691 0.462 0.539 

Tianjin 2.617 2.556 3.107 3.029 2.931 1.958 

Urumqi 0.425 0.385 0.750 0.275 0.209 0.376 

Wuhan 1.726 1.801 1.055 1.638 1.608 1.446 

Xiamen 0.172 0.190 0.560 0.176 0.205 0.315 

Xian 1.229 1.198 0.808 0.855 0.552 0.935 

Xining 0.280 0.302 0.262 0.135 0.101 0.244 

Yinchuan 0.135 0.126 0.264 0.080 0.062 0.149 

Zhengzhou 0.747 0.586 0.498 0.555 0.576 0.670 

Zhuhai 0.034 0.051 0.496 0.048 0.036 0.297 

 

III. COMPUTATIONAL EXAMPLES  

A. Example 1 

The data used in Example 1 was previously studied by 

[17-18]. Reference [17] applies DEA/assurance region 

analysis to measure the “allocative” efficiency of the 

industrial performance of 35 selected Chinese cities. 

Reference [18] determines a common set of weights 

using the proposed method, Discriminant Data 

Envelopment Analysis of Ratios, to rank the 35 Chinese 

cities. A detail description of the inputs and outputs, and 

their original values of the 35 Chinese cities are given by 

[17].  

TABLE II. APPLYING GPDA* USING ASSURANCE REGION (GOAL 2 TO 

GOAL 5) SUGGESTED BY [17] TO EXAMPLE 1 

 

Constraints imposing 

weights restrictions in 

GPDA 

Values of 

deviational 

variables 

Goal 1: Min ∑ 𝑧𝑗

35

𝑗=1

 

 

 
∑ 𝑧𝑗

35

𝑗=1

= 1 

 

Goal 2: Min d2 v2 – 2v1 + d2 ≥ 0 d2 = 0 

Goal 3: Min d3 u2 – 0.5u1 – d3 ≤ 0 d3 = 0 

Goal 4: Min d4 v3 – 2v1 + d4 ≥ 0 d4 = 0 

Goal 5: Min d5 u3 – 0.5u1 – d5 ≤ 0 d5 = 0 

Goal 6: Min d6 

v1 + d6 ≥ 0.05 

v2 + d6 ≥ 0.05 
v3 + d6 ≥ 0.05 

d6 = 0 

Goal 7: Min d7 

0.95u1 – 0.05u2 – 0.05u3 + 

d7 ≥ 0 
0.95u2 – 0.05u1 – 0.05u3 + 

d7 ≥ 0 

0.95u3 – 0.05u1 – 0.05u2 + 
d7 ≥ 0 

d7 = 0 

*β = 0.05 and α = 0.05 

 

To normalize the data, each input or output score is 

divided by its average value. The normalized data is 

given in Table I. A list of applied weight restriction 

constraints are provided in Table II. Notice that, 

constraints of Goal 2 to Goal 5 are adapted from the 

weights restrictions of an assurance region suggested by 

[17]. Constraints of Goal 6 and Goal 7 are obtained by 

setting β = α = 0.05. We decide to use smaller values of β 

and α in Goal 6 and Goal 7.  

After the above constraints and parameters have been 

set, GPDA is solved by preemptive goal programming. 

First, GPDA is solved with only the primary goal of 

minimizing the total number of misclassifications. The 

solution indicates that one city is being misclassified. 

Then, adding the constraints: ∑ 𝑧𝑗
35
𝑗=1 = 1  and the 

constraint of Goal 2, (𝑣2 − 2𝑣1 + 𝑑2 ≥ 0),  GPDA is 

solved again, and this time the objective is Min d2. 

Applying similar procedures, the values of all deviational 

variables are reported in Table II.  

The factor weights obtained from GPDA are reported 

in Table III and rankings of cities of different methods 

are reported in Table IV. In Table IV, [17] misclassified 

four cities (i.e. either {Lhasa, Zhuhai, Shijiazhuang, 

Wuhun} or {Lhasa, Zhuhai, Hangzhou, Nanning}) while 

[18] misclassified two cities (i.e. Hangzhou and 

Nanchang). GPDA misclassified only one city (i.e. 

Nanchang). Therefore, GPDA has the best performance 

in terms of the accuracy of classifying efficient and 

inefficient DMUs in this study.  

 

224©2018 Journal of Advanced Management Science

Journal of Advanced Management Science Vol. 6, No. 4, December 2018



TABLE III. WEIGHTS OBTAINED FROM GPDA IN EXAMPLE 1  

v1 v2 v3 u1 u2 u3 

0.05000 0.82949 0.12051 0.51954 0.04102 0.25977 

TABLE IV. RANKINGS OF CITIES VIA DIFFERENT METHODS 

Cities Efficient  

Cities 

[17] [18] GPDA  

Beijing  16 7 10 

Changchun  18 15 9 

Changsha  27 19 8 

Chengdu  25 27 23 

Chongqing  13 24 29 

Dalian  23 13 21 

Fuzhou  30 23 18 

Guangzhou  19 8 7 

Guiyang  26 21 26 

Hangzhou yes 6 10* 5 

Harbin  17 31 31 

Hefei  14 20 13 

Hohot  29 25 24 

Jinan  9 14 11 

Kunming  24 18 22 

Lanzhou  10 26 28 

Lhasa yes 35* 1 2 

Nanchang yes 1.5 29* 25* 

Nanjing  12 12 14 

Nanning yes 7 2 1 

Ningbo yes 1.5 3 3 

Shanghai yes 3 4 4 

Shenyang  11 28 27 

Shenzhen  31 6 19 

Shijiazhuang  4* 22 15 

Taiyuan  28 34 34 

Tianjin  8 11 16 

Urumqi  32 32 33 

Wuhan  5* 16 20 

Xiamen  20 9 17 

Xian  21 33 30 

Xining  34 35 35 

Yinchuan  33 30 32 

Zhengzhou  15 17 12 

Zhuhai yes 22* 5 6 

*Misclassified 

 

B. Example 2 

The data used in Example 2 was previously studied by 

[4-5, 19]. The original data can be found in [19]. It 

contains three inputs and three outputs of 20 bank 

branches located in a region in Iran. The normalized data 

is given in Table V. Suppose decision makers in general 

agree that all inputs and outputs are significantly 

important in determining efficiencies of DMUs, then 

decision makers may want to set β > 0 and α > 0 in 

GPDA. By setting β = α = 0.2, the goals and the weight 

restrictions constraints of GPDA are given in Table VI. 

After we solved GPDA, the values of all the deviational 

variables are also reported in Table VI. In Example 2, all 

three goals are maintained and all deviational variables 

equal zero. The factor weights obtained from GPDA are 

reported in Table VII. Rankings from different methods 

are reported in Table VIII. In Table VIII, all efficient 

bank branches have higher rankings than inefficient bank 

branches when evaluated by [5] and GPDA. The model 

proposed by [4] ranks only efficient bank branches. In 

this example, GPDA has similar performance when 

compare with other existing methods.  

TABLE V. NORMALIZED DATA OF EXAMPLE 2 

 Inputs Outputs 

B
an

k
  

B
ra

n
ch

 

S
ta

ff
 

C
o

m
p
u

te
r 

 

T
er

m
in

al
s 

S
p

ac
e 

(m
2
) 

D
ep

o
si

ts
 

L
o

an
s 

C
h
ar

g
e 

 1  1.2871 0.9825 0.4216 0.9963 0.9502 0.7974 

 2  1.0784 0.8421 2.7202 1.1882 1.1433 1.2602 

 3  1.0811 1.0526 1.3941 1.1971 1.7682 0.7102 

 4  1.1717 0.7719 0.5712 1.0105 1.1524 2.7253 

 5  1.1039 1.1930 0.7276 1.2234 1.3159 0.6712 

 6  1.1398 0.9123 1.3601 1.0849 1.0979 1.5504 

 7  0.9737 0.8421 0.9521 0.9565 1.6401 1.9508 

 8  1.0636 1.0526 0.3264 0.6555 0.4264 0.8113 

 9  0.6441 0.8421 0.3672 0.4200 0.6639 0.6647 

 10  0.9185 0.7719 1.3873 0.4289 0.3344 0.1325 

 11  0.9632 1.4035 0.8297 1.1101 0.5793 1.0986 

 12  1.0988 0.9123 0.6936 0.6434 1.6811 1.7112 

 13  0.8920 1.1930 0.9249 0.9203 1.1758 0.7099 

 14  1.3223 1.1228 1.4689 0.7567 0.9372 0.6631 

 15  0.9271 1.3333 1.2241 5.2437 0.4769 0.2676 

 16  0.8298 1.2632 1.4281 0.6036 0.7328 1.2648 

 17  1.3544 0.8421 0.5576 0.4719 1.8223 0.4399 

 18  0.8583 0.9123 0.6392 0.3099 0.6364 0.1848 

 19  0.5031 0.9825 0.6460 0.2019 0.3459 0.3031 

 20  0.7892 0.7719 1.3601 0.5773 1.1198 2.0830 

TABLE VI. APPLYING GPDA* TO EXAMPLE 2 

Preemptive 

goals 

Constraints imposing weights 

restrictions in GPDA 

Values of 

deviational 

variables 

Goal 1: Min 

∑ 𝑧𝑗

20

𝑗=1

 

 

∑ 𝑧𝑗

20

𝑗=1

= 0 

 

Goal 2: Min d2 v1 + d2 ≥ 0.2 

v2 + d2 ≥ 0.2 

v3 + d2 ≥ 0.2 

d2 = 0 

Goal 3: Min d3 0.8u1 – 0.2u2 – 0.2u3 + d3 ≥ 0 
0.8u2 – 0.2u1 – 0.2u3 + d3 ≥ 0 

0.8u3 – 0.2u1 – 0.2u2 + d3 ≥ 0 

d3 = 0 

* β = 0.2 and α = 0.2 
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TABLE VII. INPUT AND OUTPUT WEIGHTS IN EXAMPLE 2 

v1 v2 v3 u1 u2 u3 

0.29131 0.26321 0.44549 0.18292 0.36427 0.36742 

TABLE VIII. RANKINGS OF BANK BRANCHES VIA DIFFERENT 

METHODS 

Branch CCR-

efficient 

[4] [5]– DMUI [5] – DMU4 GPDA 

1 yes 7 6 5 7 

2   10 10 16 

3   8 8 11 

4 yes 2 1 3 1 

5   9 9 9 

6   14 14 8 

7 yes 3 2 1 2 

8   12 12 14 

9   13 13 10 

10   20 20 20 

11   16 16 13 

12 yes 6 4 6 3 

13   11 11 12 

14   18 18 17 

15 yes 1 7 2 5 

16   15 15 15 

17 yes 5 5 7 6 

18   17 17 18 

19   19 19 19 

20 yes 4 3 4 4 

IV. CONCLUSION  

One of the common criticisms in DEA is that it lacks 

discriminating power among efficient DMUs, since they 

all have the same efficiency ratio. In this paper, we 

introduce a method, GPDA, based on discriminant 

analysis and weight restrictions to enhance the 

discrimination power in DEA. The advantages of 

applying GPDA have already been discussed in the paper. 

The results of the two empirical examples also 

demonstrate the usefulness of applying GPDA to rank 

DMUs. Future research areas may include adding more 

forms of weight restrictions to GPDA. Currently, GPDA 

applies symmetric penalty to both the misclassifications 

of an efficient DMU and an inefficient DMU. However, it 

may be more appropriate to put different penalties on the 

misclassification of inefficient DMUs and efficient 

DMUs depending on their expected costs of 

misclassifications.  
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