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Abstract— Data envelopment analysis (DEA) has been a 

popular approach in performance measure. However, 

alternate optimal solutions exist in most linear 

programming solutions of an efficient decision making unit 

(DMU), and reduce the effectiveness of the DEA cross 

efficiency evaluation method in ranking DMUs. Some 

methods choosing different weight sets in the alternate 

optimal solutions to perform cross efficiency evaluation 

have been studied in the literature. This paper introduces an 

approach to find two weight sets with opposite secondary 

objectives: one minimizes the number of efficient DMUs and 

the other maximizes the number of efficient DMUs, in the 

alternate optimal solutions, for cross efficiency evaluation. 

Both weight sets are used to compute cross efficiency 

evaluation in DEA. The intuition of this approach is that a 

“truly” efficient DMU is expected to perform well in any 

efficient weight sets in DEA. Therefore, a more efficient 

DMU is expected to have a higher evaluation than those of 

other less efficient DMUs when evaluated with weight sets 

that are different in their weight patterns. Computational 

results are provided to show the value of the proposed 

approach.   

 

Index Terms— data envelopment analysis, discriminant 

analysis, efficiency ratio, linear programming, mixed-

integer linear programming, performance measure 

 

I. INTRODUCTION 

Data Envelopment Analysis (DEA) is a very popular 

method in performance measure. Consider n decision 

making units, DMUj (j = 1,2,…,n) each of which has m 

inputs xij (i = 1,…, m) and s outputs yrj (r = 1,…, s). The 

relative efficiency of each DMU0 can be obtained from 

the following linear programming (LP) model [1], usually 

known as the CCR model: 

 

𝑀𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑜

𝑠

𝑟=1

                                                                      (1) 

s. t.  ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

 ≤ 0,    𝑗 = 1, . . . , 𝑛,             (2) 

 

  ∑ 𝑣𝑖

𝑚

𝑖=1

𝑥𝑖𝑜 = 1,                                                              (3)  
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where ur (r = 1,…, s) and vi (i = 1,…, m) are factor 

weights for output r and input i, respectively.  

Despite of its popularity, a common problem in DEA 

is that all efficient decision making units (DMUs) have 

the same efficiency ratio which makes it difficult to rank 

efficient DMUs. Reference [2] uses cross-efficiency 

ratios to provide discrimination among efficient DMUs. 

Cross-efficiency ratios of a DMU are obtained by using 

optimal weights from other DMUs to compute efficiency 

ratios. Then, the average values of cross-efficiency ratios 

can be used to rank DMUs in terms of their efficiencies. 

The argument of using cross-efficiency ratios is that an 

efficient DMU should maintain good performance under 

different weight patterns. As a result, it is expected that 

the higher the cross-efficiency ratio, the more efficient is 

the DMU. However, alternate optimal solutions exist in 

most linear programming solutions of an efficient DMU, 

and reduce the effectiveness of ranking DMUs using 

cross-efficiency ratio in DEA.  

Methods choosing weight sets among the alternate 

optimal solutions to perform cross efficiency evaluation 

have been studied in the literature. References [3-4] 

propose several secondary objectives to look for a more 

suitable weight set within the alternate optimum region. 

Reference [5] combines discriminant analysis and super-

efficiency DEA model in DEA cross efficiency 

evaluation. Reference [6] proposes a model that 

minimizes deviations of input and output weights from 

their means for efficient DMUs in data envelopment 

analysis. Reference [7] introduces a cross efficiency 

evaluation method based on weight-balanced data 

envelopment analysis model. Reference [8] proposes two 

formulations on the secondary goal namely: minimizes 

the best cross-efficiency of peer DMUs of cross-

efficiency in DEA, and maximizes the worst cross-

efficiency of peer DMUs of cross-efficiency in DEA. 

Reference [9] proposes new methods for ranking decision 

making units based on the dispersion of weights and 

Norm 1 in Data Envelopment Analysis. Reference [10] 

applies super-efficiency DEA model to find the most 

efficient decision making unit in DEA. Reference [11] 

introduces a new ranking method base on maximum 

appreciative e cross-efficiency in DEA. Reference 

[12] extends secondary goal models to incorporate weight 

selection in DEA cross-efficiency evaluation. Reference 

[13] suggests performing DEA cross-efficiency 

evaluation based on Pareto improvement.  
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The idea of using cross efficiency evaluation is to 

evaluate DMU by different weight sets. Intuitively, 

adding more suitable weight sets in cross efficiency 

evaluation will increase the reliability of the evaluation. 

Therefore, in this paper for each efficient DMU, we 

introduce an approach to find two weight sets with 

opposite secondary objectives, namely: (1) minimizing 

the total number of efficient DMUs and (2) maximizing 

the total number of efficient DMUs, among the multiple 

optimal solutions in DEA for cross efficiency evaluation. 

A “truly” efficient DMU is expected to perform well in 

any efficient weight sets in DEA. Therefore, DMUs that 

are more efficient are expected to perform better in the 

above weight sets in cross efficiency evaluation than 

DMUs that are less efficient.  

II. PROPOSED MODELS 

We propose a model minimizing the numbers of 

efficient DMUs (MINEFF) as the secondary objective for 

each efficient DMU in DEA. Consider an efficient DMU, 

DMU0, MINEFF is formulated as follow:  

 

𝑀𝑖𝑛 ∑ 𝑧𝑗

𝑗∈𝐸

                                                                            (4) 

 

𝑠. 𝑡. ∑ 𝑣𝑖

𝑚

𝑖=1

𝑥𝑖0 = 1,                                                             (5) 

 

 ∑ 𝑢𝑟

𝑠

𝑟=1

𝑦𝑟0 = 1,                                                            (6) 

 

∑ 𝑢𝑟

𝑠

𝑟=1

𝑦𝑟𝑗 −  ∑ 𝑣𝑖

𝑚

𝑖=1

𝑥𝑖𝑗 + ℎ𝑗 = 0, 𝑗 ∈ 𝐸,        (7) 

 

ℎ𝑗 − 𝑀𝑧𝑗 ≤ 0, 𝑗 ∈ 𝐸,        (8) 

 

where 𝑧𝑗 ∈ {0,1}, ℎ𝑗 ≥ 0, 𝑗 ∈ 𝐸,  E is a set which contains 

all efficient units; 𝑢𝑟 , 𝑣𝑖 ≥ 0, r = 1, … , s, i = 1, … , m; M 

is a large positive number. The efficiency of DMU0 is 

preserved by (5) and (6). In (7) and (8), if zj = 1, DMUj is 

inefficient; and zj = 0, otherwise. The objective function 

of MINEFF (4) minimizes the number of efficient DMUs.  

In determining a second model to find another weight 

set, since our goal is to find a weight set which is 

different substantially from the weights obtained from the 

previous model, therefore; instead of minimizing the 

number of efficient DMUs as in MINEFF, we propose 

maximizing the number of efficient DMUs (MAXEFF) as 

the secondary objective. Therefore, for each DMU0, the 

proposed model, MAXEFF, is listed as follows:  

 

𝑀𝑎𝑥 ∑ 𝑧𝑗

𝑗∈𝐸

                                                                            (9) 

𝑠. 𝑡. ∑ 𝑣𝑖

𝑚

𝑖=1

𝑥𝑖0 = 1,                                                             (10) 

 

 ∑ 𝑢𝑟

𝑠

𝑟=1

𝑦𝑟0 = 1,                                                           (11) 

 

∑ 𝑢𝑟

𝑠

𝑟=1

𝑦𝑟𝑗 − ∑ 𝑣𝑖

𝑚

𝑖=1

𝑥𝑖𝑗 + ℎ𝑗 = 0, 𝑗 ∈ 𝐸,        (12) 

 

ℎ𝑗 − 𝑀𝑧𝑗 ≤ 0, 𝑗 ∈ 𝐸,        (13) 

 

where 𝑧𝑗 ∈ {0,1}, ℎ𝑗 ≥ 0, 𝑗 ∈ 𝐸,  E is a set which contains 

all efficient units; 𝑢𝑟 , 𝑣𝑖 ≥ 0, r = 1, … , s, i = 1, … , m; M 

is a large positive number.  The efficiency of DMU0 is 

preserved by (10) and (11). In (12) and (13), if zj = 1, 

DMUj is inefficient; and zj = 0, otherwise. The objective 

function of MAXEFF (9) maximizes the number of 

efficient DMUs. 
In cross-evaluations, it is better to have optimal weight 

sets that are heterogeneous. Then the efficiency of each 
DMU can be evaluated by different weight patterns. 
Increase the heterogeneity among the optimal weight sets 
used may increase the accuracy of cross-evaluation since 
for a truly efficient DMU, it is expected that it remains 
efficient or near efficient under different weight patterns. 
Our approach provides two sets of optimal weights which 
are obtained from two opposite secondary objectives. The 
two sets of optimal weights obtained from the two 
secondary objectives are expected to be very different in 
terms of their weight patterns. It should be noted that the 
proposed approach only uses weight sets obtained from 
efficient DMUs. We do not use weight sets obtained from 
inefficient DMUs, since we believe that the weight sets 
from inefficient DMUs are unlikely to be good 
representatives of the true underlying weight structure. 
Therefore, for each efficient DMU, the proposed 
approach provides two sets of optimal weights for the 
computations of cross-efficiency ratios.  

We summarize our proposed approach as follows: 

(1) Determine efficient DMUs in E by solving the CCR 

model for each DMU. 

(2) Solve MINEFF and MAXEFF for all DMUs in E 

found in Step (1). 

(3) Calculate for each DMU, the cross-efficiency ratio 

using the optimal weight set obtained from MINEFF 

for each efficient DMU in E. Repeat the 

computations using optimal weight set obtained from 

MAXEFF.  

(4) Then for each DMU calculate the average cross-

efficiency ratio by taking the average of all the cross-

efficiency ratios obtained in Sep (3) above.  

We call our proposed method combined cross-

efficiency approach (COMBINE).  

III. COMPUTATIONAL EXAMPLES 

A. Original Data 

We apply the proposed approach to a data set which 

was initiated by [14] and had been studied by [15-17]. 

This data set is composed of one input, which is total cost 

(TC), and three outputs, namely: the number of teaching 
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units (TU), regular patients (RP) and severe patients (SP) 

of 15 hypothetical hospitals. The original data were 

generated by the equation suggested by [14] as shown 

below: 

 

Total Cost = 0.5 TU + 133.68 RP + 174.74 SP       (14) 

 

The first seven hospitals were generated as efficient 

hospitals. The total cost of each efficient hospital is 

exactly equal to the weighted sum of outputs as computed 

by (14). The rest were generated as inefficient hospitals. 

The total cost of each inefficient hospital is larger than 

the weighted sum of outputs as computed by (14). The 

inputs, outputs, and true efficiency ratios of the 15 

hospitals are listed in Table I. True efficiency ratio of a 

hospital is derived as the weighted sum of outputs divided 

by the weighted sum of inputs of the hospital using 

weights from (14). The first seven hospitals have 

efficiency ratios equal to one while the efficiency ratios 

of other hospitals are less than one. We applied DEA (i.e., 

CCR model) to solve the original 15 hospitals problem. 

We also applied simple cross-evaluation (SCE) to 

calculate the average cross-efficiency ratio for each 

hospital. In SCE, we used weight sets of all DMUs from 

the CCR model to compute cross-efficiencies of DMUs. 

Then we solved MINEFF and MAXEFF for each 

efficient DMU in E. We then used optimal weight sets 

obtained from MINEFF and MAXEFF of each efficient 

DMU to compute the cross-efficiency ratios for each 

DMU. Then the COMBINE average cross-efficiency 

ratio of each DMU was calculated by taking the average 

of all the cross-efficiency ratios obtained from the two 

secondary objectives of all the efficient DMUs.  

TABLE I. INPUTS AND OUTPUTS OF 15 HOSPITALS 

Hospital TU RP SP TC True Ratio 

1 50 3 2 775.5 1 

2 50 2 3 816.6 1 

3 100 2 3 841.6 1 

4 100 3 2 800.5 1 

5 50 3 3 950.3 1 

6 100 2 5 1191.05 1 

7 50 10 2 1711.3 1 

8 100 3 2 884.75 0.9048 

9 50 2 3 841.6 0.9703 

10 100 10 2 2036.3 0.8527 

11 50 5 3 1362.6 0.8936 

12 100 3 3 1070 0.9115 

13 50 4 5 1491.1 0.9613 

14 50 3 2 898.7 0.8629 

15 100 3 3 1070 0.9115 

TABLE II. RATIOS AND AVERAGE CROSS-EFFICIENCY RATIOS OF 

DIFFERENT METHODS (15 HOSPITALS, ONE INPUT) 

Hospital True  

Ratio 

DEA  

Ratio 

SCE 

Ratio 

COMBINE 

Ratio 

1 1.00000   1.00000   0.84154 0.99992 

2 1.00000  1.00000 0.82983 1.00000 

3 1.00000  1.00000 0.92028 0.99967 

4 1.00000  1.00000 0.93626 0.99958 

5 1.00000 1.00000 0.81951 0.99997 

6 1.00000 1.00000 0.86213 0.99996 

7 1.00000 1.00000 0.79506 0.99993 

8 0.90479 0.90477 0.84711 0.90439 

9 0.97027 0.97029 0.80518 0.97029 

10 0.85266 0.92333 0.71573 0.85248 

11 0.89360 0.89515 0.71999 0.89361 

12 0.91145 0.91144 0.81836 0.91121 

13 0.96131 0.97252 0.75933 0.96146 

14 0.86293 0.86291 0.72617 0.86284 

15 0.91145 0.91144 0.81836 0.91121 

Pearson Correlation  
with true ratios 

0.946 0.682 1.000 

Spearman's rho 

with true ratios 

0.936 0.692 0.949 

The results are reported in Table II. In order to 

measure how well each approach can generate efficiency 

ratios of each DMU similar to the true efficiency ratios, 

we computed Pearson correlation and Spearman’s rho 

between the efficiency ratios obtained from each 

approach and the true efficiency ratios. We expected that 

the higher the correlation coefficients, the more similar 

are the efficiency ratios to the true efficiency ratios.  

In Table II, efficiency ratios obtained from DEA and 

COMBINE have very high Pearson correlations and 

Spearman’s rho with the true efficiency ratios. However, 

the ratios obtained from SCE, on the other hand, has low 

correlations with the true efficiency ratios. This finding 

can be explained by the effect of alternate optimal 

solutions discussed previously. The optimal weight set of 

an efficient DMU obtained from the CCR model is 

usually coming from the first solution found by the 

computer software, which very often does not represent 

the true underlying weight structure. Using weight sets 

obtained from MINEFF and MAXEFF, average cross-

efficiency ratios of COMBINE have high Pearson 
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correlations and Spearman’s rho with the true efficiency 

ratios.  

B. Modified Data 

The original data set has only one input. However, in 

DEA, DMUs usually have multiple inputs. As a result, 

we partitioned the total cost in equation (14), into two 

elements using the following equation, 

 

Total Cost = 25 Cost1 + 50 Cost2                (15) 

 

Substituting (15) into (14), it becomes, 

 

25Cost1 + 50Cost2 = 0.5TU + 133.68RP + 174.74SP (16) 

 

TABLE III. INPUTS AND OUTPUTS OF 17 HOSPITALS 

H
O

S
P

IT
A

L
 

T
U

 

R
P

 

S
P

 

C
o

st
1
 

C
o

st
2
 

T
ru

e 
E

ff
ic

ie
n

cy
 R

at
io

 

1 50 3 2 11 10.01 1 

2 50 2 3 22 5.332 1 

3 100 2 3 16 8.832 1 

4 100 3 2 15 8.51 1 

5 50 3 3 27 5.506 1 

6 100 2 5 31 8.321 1 

7 50 10 2 28 20.226 1 

8 100 3 2 23 6.195 0.9048 

9 50 2 3 19 7.332 0.9703 

10 100 10 2 30 25.726 0.8527 

11 50 5 3 21 16.752 0.8936 

12 100 3 3 13 14.9 0.9115 

13 50 4 5 24 17.822 0.9613 

14 50 3 2 16 9.974 0.8629 

15 100 3 3 25 8.9 0.9115 

16 100 3 5 20 15.17 1.0526 

17 50 4 2 15 14.321 0.8333 

Weights 0.5 133.7 174.7 25 50  

 

The values of the two new costs and the three outputs 

are listed in Table III. The original total cost of each 

hospital remains the same after split. The true efficiency 

ratios of all hospitals are shown in Table III. The first 

seven hospitals have efficiency ratios equal to one and 

HOSPITAL8 to HOSPITAL15 have efficiency ratios less 

than one. The true efficiency ratios of the 15 hospitals are 

the same as in Table I.  

In addition, we added two new hospitals to the data set. 

Both HOSPITAL16 and HOSPITAL17 are newly added 

hospitals. HOSPITAL16 is designed to be more efficient 

than the original 15 hospitals with true efficiency ratio 

equal to 1.0526, while HOSPITAL17 is designed to be 

less efficient than the original 15 hospitals with efficiency 

ratios equal to 0.8333. We performed DEA, SCE, and 

COMBINE on the first 15 DMUs in Table III. The results 

are reported in Table IV. We first study the original 15 

DMUs since their results can be compared with those 

obtained in Table II and from other previous studies. We 

then applied all methods to all 17 hospitals. The results 

are reported in Table V and Table VI.  

TABLE IV.  RATIOS AND AVERAGE CROSS-EFFICIENCY RATIOS (CER) 

OF DIFFERENT METHODS (15 HOSPITALS, TWO INPUTS) 

Hospital True  
Ratio 

DEA  
Ratio 

SCE  
Ratio 

COMBINE 
Ratio 

1 1.00000 1.00000  0.83872 0.98393  

2 1.00000 1.00000 0.69721 0.92632 

3 1.00000 1.00000 0.88098 0.97610 

4 1.00000 1.00000 0.88365 0.99374 

5 1.00000  1.00000 0.66677 0.92555 

6 1.00000  1.00000 0.75036 0.93230 

7 1.00000  1.00000 0.70316 0.97378 

8 0.90479 1.00000 0.72207 0.87638 

9 0.97027 0.97737 0.70749 0.90813 

10 0.85266 1.00000 0.67884 0.85075 

11 0.89360 0.90178 0.67895 0.86381 

12 0.91145 1.00000 0.90322 0.92084 

13 0.96131 1.00000 0.71807 0.90965 

14 0.86293 0.86292 0.66829 0.83416 

15 0.91145 0.92572 0.71987 0.87449 

Pearson Correlation  

with true ratios  

0.592 0.334 0.881 

Spearman's rho 

with true ratios  

0.539 0.328 0.918 

In Table IV, both DEA and SCE perform poorly in 

terms of Pearson Correlation (and Spearman’s rho) which 

are equal to 0.592 (0.539) and 0.334 (0.328), respectively, 
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while the Pearson Correlation and Spearman’s rho of 

COMBINE are equal to 0.881 and 0.918, respectively. 

When compared with the results from Table II, the poor 

performance of DEA and SCE can be explained by an 

increase in the feasible region of the LP model when the 

original input was split into two different cost elements. 

This allows a higher flexibility in choosing optimal 

weights in the feasible region; therefore, the model has a 

higher chance to deviate from the true underlying weight 

set. In practice, multiple inputs is more common than a 

single input in DEA applications. In this case, the 

proposed approach performs much better than DEA and 

the SCE methods.  

TABLE V. RATIOS AND AVERAGE CROSS-EFFICIENCY RATIOS OF 

DIFFERENT METHODS (17 HOSPITALS, TWO INPUTS) 

Hospital 
True 

Ratio 

DEA 

Ratio 

SCE 

Ratio 

COMBINE 

Ratio 

1 1.00000 1.00000 0.84606 0.95878 

2 1.00000 1.00000 0.69589 0.86207 

3 1.00000 1.00000 0.83593 0.94974 

4 1.00000 1.00000 0.85302 0.99377 

5 1.00000 1.00000 0.68024 0.86739 

6 1.00000 1.00000 0.72575 0.86820 

7 1.00000 1.00000 0.75807 0.95696 

8 0.90479 1.00000 0.69934 0.86739 

9 0.97027 0.95237 0.70088 0.84856 

10 0.85266 1.00000 0.71161 0.85204 

11 0.89360 0.88728 0.70040 0.83045 

12 0.91145 1.00000 0.87979 0.91100 

13 0.96131 0.93639 0.7265 0.84816 

14 0.86293 0.84637 0.67365 0.80729 

15 0.91145 0.92572 0.69945 0.84737 

16 1.05263 1.00000 0.86347 0.96425 

17 0.83333 0.89523 0.70304 0.80467 

Pearson Correlation 
with true ratios 

0.404 0.468 0.714 

Spearman's rho 

with true ratios 
0.639 0.404 0.791 

TABLE VI. RANKS OF THE 17 HOSPITALS BY THE DIFFERENT METHODS 

(TWO INPUTS) 

Hospital 
True 

Rank 

DEA 

Rank 

SCE 

Rank 

COMBINE 

Rank 

1 5 6 4 3 

2 5 6 15 10 

3 5 6 5 5 

4 5 6 3 1 

5 5 6 16 8.5 

6 5 6 8 7 

7 5 6 6 4 

8 13 6 14 8.5 

9 9 12 11 12 

10 16 6 9 11 

11 14 16 12 15 

12 11.5 6 1 6 

13 10 13 7 13 

14 15 17 17 16 

15 11.5 14 13 14 

16 1 6 2 2 

17 17 15 10 17 

 

In Table V, DEA and SCE have Pearson Correlation 

(Spearman’s rho) equal to 0.404 (0.639) and 0.468 

(0.404), respectively, while the Pearson Correlation 

(Spearman’s rho) of COMBINE is equal to 0.714 (0.791). 

Again, COMBINE performs much better than DEA and 

the SCE methods.  

The two added hospitals have true ranks equal to one 

and seventeen. HOSPITAL16 is the most efficient while 

HOSPITAL17 is the least efficient. The results in Table VI 

indicate that DEA ratios rank HOSPITAL16 as 6
th

 and 

HOSPITAL17 as 15
th

. Since there are eleven hospitals tied 

in the first place, therefore; HOSPITAL16 is ranked as 6
th

 

in DEA. The simple cross-evaluation method ranks 

HOSPITAL16 as 2
nd

 and HOSPITAL17 as 10
th

. The 

proposed approach, COMBINE ranks HOSPITAL16 as 

2
nd

 and HOSPITAL17 as 17
th

.  In the experimental design 

we intended to make HOSPITAL17 as very inefficient 

compared with other DMUs and it is ranked last among 

all DMUs in terms of efficiency. However, only 

COMBINE has ranked HOSPITAL17 correctly.  Again in 

this case, the proposed approach performed better than 

DEA and SCE. 
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IV. CONCLUSION 

This paper proposed two secondary objectives in DEA 

to search for better optimal weight sets in the alternate 

optima in DEA. The two secondary objectives are very 

different in terms of their optimization objectives: one is 

to minimize the total number of efficient DMUs and the 

other is to maximize the total number of efficient DMUs. 

With these two extremely different objectives, their 

weight sets obtained are expected to be very different. 

The intuition of this approach is that a more efficient 

DMU is expected to perform better than other less 

efficient DMUs when evaluated with efficient weight sets 

that are different substantially in their factor weights. 

Furthermore, adding more weight sets in the computation 

of cross-evaluation will increase the reliability of the 

cross-evaluation method. Computational results show that 

the proposed approach performed well when compared to 

both DEA and the simple cross-evaluation methods. 

Future research areas may include the possibility of 

adding more weight sets that contain factor weights in 

different weight patterns in the cross-evaluation in DEA. 
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