Digital Leadership in Singapore's FinTech Sector: The Role of Well-Being, Technology, and Knowledge Sharing

Nasri Bin Najib ^{1,*}, Darwin Joseph ², and Sabeen Hussain Bhatti ³

¹ Teesside-MDIS DBA, Teesside University, Management Development Institute of Singapore (MDIS), Singapore ² International Business School, Teesside University, London, United Kingdom

Abstract—This paper examines predictors and outcomes of digital leadership in Singapore's IT and financial technology (fintech) sectors. Drawing on Hill's Team Leadership Model, the study identifies three predictors—leader well-being, digital technology usage, and knowledge sharing—and two outcomes: employee branding and innovation. A quantitative survey of 388 remote and hybrid employees was conducted, analyzed using Structural Equation Modeling (SEM). Results confirm that leader well-being, technology adoption, and knowledge sharing significantly predict digital leadership effectiveness, which in turn enhances employee branding and innovation performance. The study contributes to the academic validation of digital leadership constructs and provides practical implications for organizations seeking to strengthen leadership capabilities in a digital era.

Keywords—digital leadership, fintech, leader well-being, knowledge sharing, digital technologies, employee branding, innovation

I. LITERATURE REVIEW

Digital leadership has become an essential construct in understanding how organizations navigate the challenges of a digital economy. Unlike traditional leadership approaches, which emphasize hierarchical control and transactional management, digital leadership focuses on the integration of emerging technologies, human-centered practices, and collaborative knowledge flows (Zeike, Bradbury, Lindert, & Pfaff, 2019). The section reviews six constructs central to this study: leader well-being, digital technologies, knowledge sharing, digital leadership, employee branding, and innovation. It also draws on Hill's Team Leadership Model as the theoretical framework that links predictors and outcomes of digital leadership.

Leader well-being has been increasingly recognized as a crucial predictor of leadership effectiveness in digital contexts. The strain of constant connectivity, heightened information flows, and blurred boundaries between work and personal life have created risks of stress and burnout for leaders (Yuan, 2022). Leaders who report higher psychological well-being more capable of demonstrating empathy, resilience, adaptability—characteristics that align closely with digital leadership requirements (Zeike et al., 2019). By contrast, low well-being undermines leaders' ability to engage in transformational and participatory practices. The literature suggests that organizations prioritizing mental health initiatives, flexible work arrangements, and wellness support equip leaders to perform effectively in digitally enabled workplaces. Based on this reasoning, the following hypothesis is proposed:

 H1. Leader well-being is positively related to digital leadership.

The adoption and use of digital technologies represent another foundational enabler of digital leadership. Scholars argue that leaders must not only possess awareness of digital tools but also actively integrate them into workflows, decision-making, and stakeholder engagement (Benitez, Castillo, Llorens, & Braojos, 2022). Technologies such as collaboration platforms, AI-enabled analytics, and knowledge management systems empower leaders to coordinate distributed teams and accelerate innovation (Chatterjee, Rana, Tamilmani, & Sharma, 2023). Yuan (2020) highlights that leaders who leverage technological capabilities are more likely to inspire confidence among employees, shaping perceptions of competence and forward-looking vision. However, technology adoption alone does not effectiveness; it must be combined with strategic insight and cultural alignment. The literature indicates that digitally mature leaders are those who transform technologies from operational tools into strategic assets. Thus, this study hypothesizes:

• H2. Digital technologies are positively related to digital leadership.

Knowledge sharing has long been associated with organizational learning and innovation, but its significance in digital leadership is especially pronounced. Digital

³ School of Business, Teesside University, Management Development Institute of Singapore (MDIS), Singapore Email: nasri.najib@gmail.com (N.B.N.); darwin_joseph@mdis.edu.sg (D.J.); S.Bhatti@tees.ac.uk (S.H.B.)

*Corresponding author

Manuscript received September 15 2025; accepted October 20 2025; published November 27 2025.

leaders act as facilitators of open communication, ensuring that tacit and explicit knowledge flows seamlessly across boundaries (Jose & Ramayah, 2022). In remote and hybrid environments, structured knowledge-sharing practices reduce silos, foster collaboration, and enhance decision-making speed. Scholars emphasize that leaders who role-model sharing behaviors encourage reciprocity and build a culture of trust (Chamakiotis, Dekoninck, & Panteli, 2021). Furthermore, knowledge sharing is critical for leveraging diverse expertise in fintech, where must integrate cross-functional teams technical, regulatory, and customer insights. Leaders who neglect this practice risk creating fragmentation and duplication of effort. Accordingly, this study advances the following hypothesis:

 H3. Knowledge sharing is positively related to digital leadership.

Digital leadership itself has been conceptualized in multiple ways, ranging from competence in using digital tools to transformational practices that create digital-first cultures. Zeike et al. (2019) define digital leadership as the capability to guide organizations in leveraging technologies to achieve performance outcomes while safeguarding employee well-being. Benitez et al. (2022) stress that digital leadership is not merely a technical skillset but also a cultural capability, emphasizing collaboration, agility, and innovation. In this study, digital leadership is positioned as the mediating construct that links the predictors (leader well-being, digital technologies, knowledge sharing) to the outcomes (employee branding, innovation). This mediating role aligns with Hill's Team Leadership Model, where leaders are responsible for monitoring environments, diagnosing challenges, and implementing corrective actions (Hill, 2001).

Employee branding is a growing area of interest, particularly in digitally intensive industries such as fintech. Yuan (2020) suggests that employees are more likely to act as brand ambassadors when leadership practices create pride, trust, and identification with the organization. In digital contexts, where employee voices are amplified through social media, leaders play a vital role in shaping perceptions of authenticity and credibility (Yuan, 2022). Digital leadership contributes to employee branding by fostering cultures of transparency, enabling flexible work practices, and signaling innovation through technology adoption. Leaders who embody digital values influence not only internal morale but also external employer brand reputation. Thus, the following hypothesis is proposed:

• H4. Digital leadership is positively related to employee branding.

Innovation is widely recognized as a critical performance outcome of digital leadership. In rapidly evolving sectors such as fintech, the ability to continuously innovate determines long-term competitiveness. Scholars highlight that leaders with digital acumen are more effective at orchestrating experimentation, risk-taking, and iterative learning (Benitez *et al.*, 2022). Digital leadership enables innovation by aligning technological opportunities with market demands, encouraging cross-functional

collaboration, and reducing resistance to change (Chatterjee *et al.*, 2023). Furthermore, digital leaders cultivate psychological safety, allowing employees to explore novel solutions without fear of failure. Empirical evidence supports the idea that digital leadership enhances innovation outcomes, particularly when organizations embed digital platforms that facilitate ideation and co-creation (Jose & Ramayah, 2022). Consequently, this study hypothesizes:

H5. Digital leadership is positively related to innovation.

In summary, the literature positions leader well-being, digital technologies, and knowledge sharing as critical predictors of digital leadership. Digital leadership, in turn, drives employee branding and innovation. Grounded in Hill's Team Leadership Model, these relationships form the conceptual framework guiding this study. The next section discusses the methodology used to empirically test these hypotheses.

II. METHODOLOGY

This study employed a quantitative research design grounded in Hill's Team Leadership Model to examine the predictors and outcomes of digital leadership in Singapore's financial technology (fintech) Information Technology (IT) sectors. A cross-sectional survey method was chosen to test the hypothesized relationships among leader well-being, technologies, knowledge sharing, digital leadership, employee branding, and innovation. Structural Equation Modeling (SEM) was used as the primary analytical tool because of its suitability for validating latent constructs and testing complex path relationships (Hair, Black, Babin, & Anderson 2019).

A. Research Design and Sample

The target population comprised professionals employed in fintech and IT organizations operating in Singapore. These sectors were selected due to their rapid digital transformation and centrality to Singapore's Smart Nation agenda. Data were collected through an online networks, survey distributed via organizational professional associations, and LinkedIn groups. Participation was voluntary, and all respondents provided informed consent.

TABLE I. DEMOGRAPHICS OF RESPONDENTS

	Variable	Frequency	Percentage
Gender	Male	235	54.7
	Female	195	45.3
Age	Under 30	74	17.2
	30-39	147	34.2
	40-49	137	31.9
	50-59	56	13.0
	Over 60	16	3.7
	High School	42	9.8
	Diploma	46	10.7
Education	Bachelors	166	38.6
	Masters and above	168	39.1
	Others	8	1.9

A total of 420 responses were received (see Tables I and II), of which 388 were deemed valid after screening for completeness and response quality. The sample was balanced in terms of gender, age, and professional experience, ensuring representativeness of the workforce in fintech and IT. Respondents included both managers and non-managerial employees, with a substantial proportion working in remote or hybrid arrangements. This was consistent with the study's aim to explore digital leadership in digitally enabled contexts.

TABLE II. DESCRIPTIVE STATISTICS OF MAIN STUDY VARIABLES

Variable	Minimum	Maximum	Mean	Standard Deviation
Well Being	1.0	5.0	3.8973	0.68031
Digital technologies	1.0	5.0	3.8822	0.74401
Knowledge sharing	1.0	4.0	3.3645	0.49923
Digital leadership	2.0	4.0	3.3444	0.45943
Employee brand ambassadorship	1.0	7.0	5.6127	1.07790
Innovation	1.0	7.0	5.5360	1.10057

B. Survey Instrument

The survey instrument was adapted from validated scales in prior studies to ensure construct validity and reliability. Leader well-being was measured using items developed by Zeike *et al.* (2019), focusing on psychological health, resilience, and stress management. Digital technology usage was assessed with scales measuring the extent to which leaders and employees integrate digital tools in work practices (Yuan, 2020; Benitez *et al.*, 2022). Knowledge sharing items were adapted from Chamakiotis *et al.* (2021), capturing both tacit and explicit knowledge exchange.

Digital leadership was operationalized using the multi-dimensional scale by Zeike *et al.* (2019), which covers competencies in digital tool adoption, fostering innovation, and maintaining employee well-being. Employee branding was measured with Yuan's (2022) employee brand ambassadorship scale, while innovation was assessed using items that reflect both process and product innovation outcomes (Benitez *et al.*, 2022). All items were rated on a five-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree).

C. Pilot Study

Before full deployment, a pilot study was conducted with 30 respondents to test clarity, relevance, and reliability of the survey items. Feedback from the pilot led to minor adjustments in wording to suit the Singaporean context. Cronbach's alpha values for all constructs in the pilot exceeded the threshold of 0.70, indicating acceptable internal consistency (Hair *et al.*, 2019).

D. Data Analysis

Data were analyzed using a two-step SEM approach, comprising Confirmatory Factor Analysis (CFA) and structural model testing. CFA was performed to evaluate construct validity, including convergent and discriminant validity. Convergent validity was assessed through

Average Variance Extracted (AVE) and composite reliability (see Tables III and IV), while discriminant validity was tested using the Fornell-Larcker criterion.

The structural model was then tested to evaluate hypothesized relationships (H1–H5). Model fit was assessed using indices such as χ^2 /df, Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), Root Mean Square Error of Approximation (RMSEA), and Standardized Root Mean Square Residual (SRMR). Thresholds recommended by Hu and Bentler (1999) were applied (e.g., CFI and TLI \geq 0.90, RMSEA \leq 0.08).

TABLE III. RELIABILITY AND VALIDITY RESULTS

Variables	Composite reliability (rho a)	Composite reliability (rho c)	Cronbach's Alpha
Digital Leadership	0.860	0.889	0.860
Digital Technology	0.902	0.923	0.900
Employee Brand ambassadorship	0.930	0.941	0.928
Innovation	0.944	0.951	0.943
Knowledge Sharing	0.783	0.856	0.776
Well Being	0.881	0.909	0.879

TABLE IV. AVERAGE VARIANCE EXTRACTED (AVE)

Variables	Average Variance Extracted (AVE)	
Digital Leadership	0.472	
Digital Technology	0.668	
Employee Brand ambassadorship	0.640	
Innovation	0.661	
Knowledge Sharing	0.598	
Well Being	0.624	

E. Ethical Considerations

Ethical standards were upheld throughout the study. Participation was voluntary, confidentiality was maintained, and no personally identifiable information was collected. The research design complied with institutional ethical guidelines and the principles of informed consent and beneficence.

F. Summary

This methodological design ensured rigor and reliability in testing the proposed hypotheses. The next section presents the results of the analysis, including descriptive statistics, CFA outcomes, and SEM hypothesis testing.

III. RESULTS

This section presents the findings of the empirical analysis conducted using SEM. Results are organized into three subsections: descriptive statistics, measurement model outcomes, and structural model testing. Together, these analyses provide robust evidence to test the five hypotheses (H1–H5) proposed in the literature review.

A. Descriptive Statistics

Descriptive statistics were computed for all six constructs: leader well-being, digital technologies,

knowledge sharing, digital leadership, employee branding, and innovation. Means and standard deviations indicated generally positive perceptions among respondents, with most variables scoring above the midpoint of the five-point Likert scale. Skewness and kurtosis values fell within the acceptable range of -1 to +1, suggesting normal distribution of data and suitability for SEM analysis.

Internal correlations between variables showed moderate to strong positive relationships, aligning with theoretical expectations. For instance, digital technologies correlated positively with both knowledge sharing and digital leadership, reflecting the interconnected nature of digital maturity and leadership capabilities in organizational contexts.

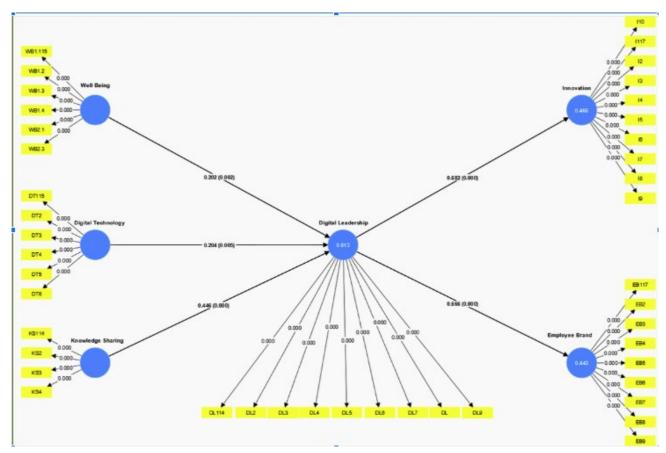


Fig. 1. SEM path model.

TABLE V. HYPOTHESIS TESTING SUMMARY

Relationship	Path Coefficient	CI (2.5%–97.5%)	T-value	P-values	Result
Digital Leadership -> Employee Brand ambassadorship	0.666	0.585-0.741	16.860	0.000	Supported
Digital Leadership -> Innovation	0.682	0.597-0.759	16.378	0.000	Supported
Digital Technology -> Digital Leadership	0.204	0.057-0.338	2.856	0.004	Supported
Knowledge Sharing -> Digital Leadership	0.446	0.313-0.577	6.497	0.000	Supported
Well Being -> Digital Leadership	0.202	0.075-0.334	3.046	0.002	Supported

B. Measurement Model

Confirmatory Factor Analysis (CFA) was conducted to evaluate the reliability and validity of the measurement model. Factor loadings for all observed items were above 0.70, demonstrating strong indicator reliability. Composite Reliability (CR) values for all constructs exceeded the recommended threshold of 0.70, indicating internal consistency. Cronbach's alpha values also

confirmed reliability, with scores ranging between 0.78 and 0.92 across constructs.

Convergent validity was assessed using AVE. All constructs achieved AVE values above 0.50, confirming that the majority of variance was explained by the intended latent construct. Discriminant validity was established using the Fornell-Larcker criterion, whereby the square root of AVE for each construct was greater than its

correlations with other constructs. These results provide strong evidence of construct validity.

Fit indices further supported the adequacy of the measurement model. The χ^2/df ratio was within the acceptable range, and indices such as CFI, TLI, RMSEA, and SRMR all met the recommended cut-off values (Hu & Bentler, 1999). Together, these results confirm that the measurement model demonstrates strong psychometric properties and is appropriate for testing the hypothesized structural relationships.

C. Structural Model and Hypotheses Testing

The structural model was tested to examine the hypothesized paths (H1–H5). Model fit indices again indicated an acceptable fit (CFI and TLI \geq 0.90, RMSEA \leq 0.08, SRMR \leq 0.08), supporting the robustness of the structural model. Path coefficients and significance levels are summarized in Table V. Hypothesis testing summary.

D. Structural Equation Modelling Summary

Fig. 1 visualizes the SEM results. Key elements are the connections between blue circles, representing this study's hypothesized relationships. The diagram presents three values: (1) P-values in brackets on connecting lines, (2) path coefficients preceding the brackets, and (3) adjusted R-squares inside blue circles, indicating variance explained by the predictors.

The analysis revealed the following:

- H1: Leader well-being was found to have a significant positive effect on digital leadership $(\beta = 0.202, p < 0.01)$. This supports the argument that psychologically healthy leaders are more effective in guiding digital transformation.
- **H2:** Digital technologies had a significant positive effect on digital leadership ($\beta = 0.204$, p < 0.01). Leaders who integrated technology into their practices were more successful in shaping digital-first cultures.
- **H3:** Knowledge sharing significantly predicted digital leadership ($\beta = 0.446$, p < 0.01). Leaders fostering open exchange of knowledge enhanced collaborative capabilities.
- **H4:** Digital leadership positively influenced employee branding ($\beta = 0.666$, p < 0.01). Strong digital leadership encouraged employees to act as brand ambassadors.
- H5: Digital leadership also positively affected innovation ($\beta = 0.682$, p < 0.01). Leaders embedding digital practices improved organizational innovation outcomes.

E. Summary of Results

In sum, all five hypotheses (H1–H5) were supported. Leader well-being, digital technologies, and knowledge sharing were confirmed as significant predictors of digital leadership, while digital leadership was validated as a positive driver of employee branding and innovation. These findings provide empirical evidence for the conceptual framework developed in the literature review

and confirm the applicability of Hill's Team Leadership Model in digital contexts.

The results highlight the interconnectedness of human, technological, and cultural factors in shaping leadership effectiveness in the fintech and IT sectors in Singapore. The next section discusses the theoretical and practical implications of these findings.

IV. DISCUSSION

The results of this study provide robust evidence supporting the hypothesized relationships between leader well-being, digital technologies, knowledge sharing, digital leadership, employee branding, and innovation. All five hypotheses (H1–H5) were confirmed, reinforcing the central role of digital leadership in mediating human, technological, and cultural resources to produce organizational outcomes.

A key contribution of this research is the empirical validation of leader well-being as a predictor of digital leadership (H1). This finding aligns with Zeike *et al.* (2019), who argue that leaders with high psychological well-being are more resilient and adaptive. In the Singaporean fintech context, where the pace of innovation is relentless, well-being is not a secondary concern but a strategic necessity. Leaders who maintain balance and mental clarity can better support distributed teams and navigate uncertainty.

The positive effect of digital technologies on digital leadership (H2) underscores the importance of digital fluency. This echoes Benitez et al. (2022), who highlight that leaders must not only adopt technologies but also embed them strategically. The evidence shows that Singaporean fintech leaders are leveraging tools for collaboration, data-driven decision-making, and innovation management. This finding resonates with Chatterjee et al. (2023), who emphasize that digital workplace technologies enable leaders to drive organizational performance when paired with leadership capabilities.

Knowledge sharing emerged as a critical enabler of digital leadership (H3). This is consistent with Jose and Ramayah (2022), who demonstrate that open knowledge flows enhance collaboration and innovation performance. In this study, leaders who fostered transparent communication created cultures of trust and reciprocity. Such practices are especially important in remote and hybrid work environments, where knowledge silos are a common risk. The finding reinforces the argument of Chamakiotis *et al.* (2021) that knowledge sharing is foundational to digital team success.

The outcomes of digital leadership—employee branding (H4) and innovation (H5)—also received strong empirical support. Yuan (2020, 2022) contends that leadership practices influence employees' willingness to act as brand ambassadors. This study confirmed that digital leaders enhance pride and identification, thereby strengthening organizational brand equity. Similarly, the positive relationship between digital leadership and innovation validates the role of leaders in orchestrating experimentation and reducing resistance to change

(Benitez *et al.*, 2022; Chatterjee *et al.*, 2023). By embedding digital-first values, leaders create psychological safety and empower teams to innovate.

Theoretically, these findings advance Hill's Team Leadership Model by situating it in digital organizational contexts. The model's emphasis on monitoring, diagnosis, and corrective action maps well to the predictors and outcomes tested in this study. Digital leaders, like Hill's team leaders, must assess their environments, identify gaps, and leverage appropriate interventions—whether through well-being support, technological integration, or knowledge sharing.

Practically, the results provide actionable insights for organizations. Firms should invest in well-being programs that support leaders' psychological resilience, ensuring sustainability in demanding digital environments. Training in digital technologies should move beyond technical proficiency to emphasize strategic application. Knowledge-sharing practices should be institutionalized through platforms and cultural reinforcement. Finally, organizations seeking to strengthen their employer brand and innovation performance must recognize digital leadership as a pivotal capability.

In summary, the discussion reinforces the interconnected nature of digital leadership: it is not solely about technology or people but about integrating multiple dimensions to drive outcomes.

V. CONCLUSION

This study examined the predictors and outcomes of digital leadership in Singapore's fintech and IT sectors, guided by Hill's Team Leadership Model. Using survey data from 388 professionals analyzed through SEM, the findings confirmed that leader well-being, digital technologies, and knowledge sharing significantly predict digital leadership, which in turn positively influences employee branding and innovation.

The research makes three key contributions. First, it empirically validates leader well-being as an antecedent of digital leadership, expanding current discourse that often prioritizes technical or strategic aspects. Second, it integrates human and technological factors, showing that knowledge sharing and digital technologies jointly shape leadership effectiveness. Third, it highlights digital leadership as a critical mediator of organizational outcomes, linking individual leader resources to collective performance in branding and innovation.

For practitioners, the study underscores the need for holistic leadership development. Organizations should implement well-being initiatives, encourage digital fluency, and institutionalize knowledge sharing to enable leaders to thrive. In turn, leaders can build stronger employee brand identities and enhance innovation capabilities. These outcomes are vital for fintech and IT organizations competing in rapidly evolving digital markets.

The study is not without limitations. Its cross-sectional design restricts causal inference, and the sample was confined to Singapore, limiting generalizability. Future research should employ longitudinal designs, explore

cross-cultural contexts, and examine additional outcomes such as employee engagement or organizational agility.

Despite these limitations, the findings provide robust evidence that digital leadership is a multifaceted capability shaped by leader well-being, technological integration, and knowledge flows. In a digital-first world, organizations that cultivate such leadership will be better positioned to sustain competitiveness and innovation.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

NBN had led the research with the conceptual framework, conducted the research, analyzed the data and wrote the paper; SHB and DJ provided research guideline and supervisory role; all authors had approved the final version.

ACKNOWLEDGMENT

Dr. Nasri wishes to thank God, his wife, family and mentors. Dr Sabeen and Dr Joseph wish to extend their appreciation to all those involved.

REFERENCES

- Avolio, B. J., & Kahai, S. 2003. Adding the "E" to E-Leadership: How it may impact your leadership. *Organizational Dynamics*, 31(4): 325–338.
- Bass, B. M., & Avolio, B. J. 1994. Improving Organizational Effectiveness through Transformational Leadership. Thousand Oaks, CA: Sage.
- Benitez, J., Castillo, A., Llorens, J., & Braojos, J. 2022. Impact of digital leadership capability on innovation performance: The role of platform digitization. *Information & Management*, 59(4): 103590.
- Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. 2013. Digital business strategy: Toward a next generation of insights. MIS Quarterly, 37(2): 471–482.
- Braun, S., Peus, C., Weisweiler, S., & Frey, D. 2013. Transformational leadership, job satisfaction, and team performance: A multilevel mediation model of trust. *The Leadership Quarterly*, 24(1): 270–283.
- Chamakiotis, P., Dekoninck, E. A., & Panteli, N. 2021. Factors influencing creativity in virtual teams. *International Journal of Project Management*, 39(4): 327–338.
- Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. 2023. Digital workplace and organizational performance: Moderating role of digital leadership capability. *International Journal of Information Management*, 71: 102585.
- Chin, W., W. 1998. The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), *Modern Methods for Business Research:* 295–336. Mahwah, NJ: Lawrence Erlbaum.
- Creswell, J. W. 2014. *Research Design: Qualitative, Quantitative, and Mixed Methods Approaches.* 4th ed. Thousand Oaks, CA: Sage.
- Deng, Z., & Chi, R. 2012. Understanding post-adoption behaviors in information systems use: A longitudinal analysis of system use and user satisfaction. *Journal of Management Information Systems*, 29(3): 157–196.
- Fatima, T., & Elbanna, S. 2020. Corporate governance and digital transformation: The moderating role of board characteristics. *Technological Forecasting and Social Change*, 161: 120255.

- Fornell, C., & Larcker, D. F. 1981. Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1): 39–50.
- Gefen, D., Straub, D., & Boudreau, M. 2000. Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4(7): 1–70.
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. 2019. Multivariate Data Analysis. 8th ed. Cengage.
- Hill, S. E. K. 2001. Team leadership. In P. G. Northouse (2nd ed.), Leadership: Theory and Practice: 161–193. Sage Publications.
- Hu, L. T., & Bentler, P. M. 1999. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural Equation Modeling*, 6(1): 1–55.
- Jose, A., & Ramayah, T. 2022. Platform digitization capability, digital leadership, and innovation performance. *Technological Forecasting and Social Change*, 176: 121455.
- Kane, G. C., Palmer, D., Phillips, A. N., Kiron, D., & Buckley, N. 2015. Strategy, not technology, drives digital transformation. MIT Sloan Management Review and Deloitte University Press, 14(1): 1–25.
- Karahanna, E., & Preston, D. 2013. The effect of social capital of the relationship between the CIO and top management team on firm performance. *Journal of Management Information Systems*, 30(1): 15–56.
- Li, F., & Wang, Y. 2021. Digital leadership and firm performance: The role of dynamic capabilities. *Journal of Business Research*, 124: 189–200.
- Nambisan, S., Lyytinen, K., Majchrzak, A., & Song, M. 2017. Digital innovation management: Reinventing innovation management research in a digital world. *MIS Quarterly*, 41(1): 223–238.

- Northouse, P. G. (8th ed.). 2019. Leadership: Theory and Practice. Sage Publications.
- Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. 2003. Common method biases in behavioral research: A critical review. *Journal of Applied Psychology*, 88(5): 879–903.
- Singh, S., Klarner, P., & Hess, T. 2022. How do chief digital officers promote digital transformation? The moderating role of top management support. *Journal of Business Research*, 142: 28–43.
- Teece, D. J. 2007. Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. *Strategic Management Journal*, 28(13): 1319–1350.
- Vial, G. 2019. Understanding digital transformation: A review and a research agenda. *The Journal of Strategic Information Systems*, 28(2): 118–144.
- Yuan, Y. 2020. I am proud of my job: Examining the psychological mechanism underlying technological innovation's effects on employee brand ambassadorship. *Journal of Business Research*, 116: 557–569.
- Yuan, Y. 2022. Well-being and employee branding in digital contexts. *Journal of Business Research*, 142: 230–245.
- Zeike, S., Bradbury, K., Lindert, L., & Pfaff, H. 2019. Digital leadership skills and associations with psychological well-being. *International Journal of Environmental Research and Public Health*, 16(14): 2628

Copyright © 2025 by the authors. This is an open access article distributed under the Creative Commons Attribution License (CC BYNC-ND 4.0), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.