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Abstract— The use of data-envelopment analysis (DEA) to 

determine the most efficient decision making unit (DMU) 

has recently drawn attention in the literature. For some 

applications of DEA, decision-makers may only want to 

identify the most efficient DMU rather than determining the 

efficiencies of all possible DMUs. Some recent approaches 

combine the use of DEA and discriminant analysis (DA) to 

rank DMUs and identify the most efficient DMU. However, 

some of these approaches have drawbacks. This paper 

addresses those drawbacks and offers suggestions for 

improvements. This paper introduces a modified model to 

solve the problem of multiple solutions in DEA in 

determining the most efficient DMU. The modified model 

has a new goal, based on the assumption of cluster analysis 

that objects belonging to the same group should be more 

similar to each other than to objects from other groups. 

With this new goal, the modified model selects the solution 

in which members of the same group, whether efficient or 

inefficient, are most tightly clustered.  

 

Index Terms— data envelopment analysis, discriminant 

analysis, goal programming, mixed integer linear 

programming 

 

I. INTRODUCTION 

 

Data envelopment analysis (DEA) is a method used to 

measure the relative performance of decision making 

units (DMUs) within a group. Suppose that there are n 

DMUs, and that each DMU has m inputs and produces s 

outputs. Let xij and yrj represent the ith input and the rth 

output of DMUj, respectively, for i = 1, . . . , m, r = 1, . . . , 

s, and j = 1, . . . , n. The Charnes, Cooper, and Rhodes 

(CCR) model [1] is as follows: 

 

𝑀𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑜

𝑠

𝑟=1

                                                                      (1) 

s. t.  ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

−  ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

 ≤ 0,    𝑗 = 1, . . . , 𝑛,             (2) 
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  ∑ 𝑣𝑖

𝑚

𝑖=1

𝑥𝑖𝑜 = 1,                                                               (3) 

where ur, vi ≥ 0, r = 1, . . . , s, and i = 1, . . . , m. The CCR 

model is solved for each DMU. A DMU is efficient only 

if its optimal objective value is capable of reaching 1 in 

the CCR model; otherwise, it is inefficient. Lately 

researchers [2-6] applied DEA in different applications. 

Recently, instead of calculating the efficiencies of all 

possible DMUs, some researchers [7-18] have sought to 

identify the most efficient DMU. In [8] and [10], two 

combinations of DEA and DA were used to rank DMUs 

and determine the most efficient DMU. Following [10], 

we call these approaches DEA-DA models. One of the 

primary advantages of applying DEA-DA models is that 

their solutions retain the fundamental result of DEA; that 

is, the classification of DMUs as efficient (E) or 

inefficient (IE). Any deviations from the original 

classifications imply certain violations of the original 

DEA model. The first step in solving a DEA-DA model is 

to classify each DMU as efficient or inefficient, using a 

classical DEA model. For instance, [8] used the CCR 

model [1], and [10] used a DEA model with a strong 

complementary slackness condition [19-21]. The second 

step is to develop a supporting hyperplane that separates 

the efficient DMUs from the inefficient DMUs, using a 

DA model. The supporting hyperplane is developed from 

the solutions generated in the first step.  

The remainder of this paper is organized as follows. 

The two existing DEA-DA models [8, 10] used to rank 

DMUs and determine the most efficient DMU are 

discussed in Section II. In Section III, the modified model 

is introduced and discussed. Section IV concludes the 

paper.  

II. THE TWO EXISTING DEA-DA MODELS 

In a DEA-DA model, each DMU is classified as 

efficient or inefficient, using a classical DEA model. 

Then, efficient and inefficient DMUs are separated by a 

supporting hyperplane developed by a DA model. Two 

DEA-DA models are discussed below. 

In [8], the CCR model [1] is used to classify all 

decision making units into “efficient” and “inefficient” 

groups. Next, the following mixed integer linear 
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programming (MILP1) model is applied to the two 

groups. 

 

Min  ∑ 𝑧𝑗

𝑛

𝑗=1

                                                                              (4) 

 

s. t.  − ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

+ ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

+ 𝑀𝑧𝑗 ≥ 0, 𝑗 ∈ 𝐸,    (5) 

 

 − ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

+ ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− 𝑀𝑧𝑗 ≤ −𝜀, 𝑗 ∈ 𝐼𝐸, (6) 

 

  ∑ 𝑣𝑖𝑥𝑖𝑒

𝑚

𝑖=1

= 1,                                                              (7) 

 

∑ 𝑢𝑟𝑦𝑟𝑒

𝑠 

𝑟=1

≥ ℎ,                                                             (8) 

 

∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− ℎ (∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

) ≤ 0,   𝑗 = 1, . . . , 𝑛, 𝑗 ≠ 𝑒, (9) 

 

𝑧𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛;   𝑢𝑟 , 𝑣𝑖 ≥ 0, 𝑟 = 1, . . . , 𝑠, 𝑖 =

1, . . . , 𝑚;  ɛ is a small positive number, M is a large 

positive number, and h is a number predetermined by the 

decision-maker.  

The input and output weights obtained from MILP1 for 

each efficient DMU are used to compute the cross-

efficiency scores of the DMUs. The objective of MILP1 

is to minimize the number of misclassifications in both 

the “efficient” group and the “inefficient” group. This 

objective is consistent with the original classificatory 

results of the DEA. Furthermore, similar to the super-

efficiency model [14] the efficient DMU under evaluation 

has the largest efficiency in MILP1. However, the value 

of h must be prescribed before MILP1 can be solved. 

Although [8] suggested using the super-efficiency model 

[22 ] to determine the value of h, trials with different 

values of h may still be required in some cases. Moreover, 

MILP1 requires one MILP problem to be solved for each 

efficient DMU, whereas most other models [9, 11-12] 

require only one MILP problem to be solved to determine 

the most efficient DMU.  

In [10], DEA with a strong complementary slackness 

condition [19-20] is first used to classify all decision 

making units as efficient or inefficient. Then, the 

following model (MILP2) is applied to the two groups.  

 

Min   𝜑 = 𝑀 ∑ 𝑧𝑗

𝑗∈𝐸

+ ∑ 𝑧𝑗

𝑗∈𝐼𝐸

                                            (10) 

s. t.  − ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

+ ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

+ 𝜎 + 𝑀𝑧𝑗 ≥ 0, 𝑗 ∈ 𝐸, (11) 

− ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

+ ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

+ 𝜎 − 𝑀𝑧𝑗 ≤ −𝜀, 𝑗 ∈ 𝐼𝐸,       (12) 

 ∑ 𝑣𝑖

𝑚

𝑖=1

+ ∑ 𝑢𝑟

𝑠

𝑟=1

= 1,                                                        (13) 

𝑣𝑖 ≥ 𝜀𝜁𝑖 , 𝑖 = 1, . . . , 𝑚,                                                    (14) 

 

𝑢𝑟 ≥ 𝜀𝜁𝑖 , 𝑟 = 1, . . . , 𝑠,                                                    (15) 

 

 ∑ 𝜁𝑖

𝑚

𝑖=1

= 𝑚,                                                                       (16) 

∑ 𝜁𝑖

𝑚

𝑖=1

= 𝑠,                                                                         (17) 

 

𝜎 ∶ 𝑈𝑅𝑆, 𝑣𝑖 ≥ 0, ∀𝑖, 𝑤𝑟 ≥ 0, ∀𝑟,  

 𝑧𝑗: binary ∀𝑗;  𝜁𝑖 : binary ∀𝑖;  𝜁𝑟: binary ∀𝑟. 

 

In MILP2, M is a prescribed large number and ɛ is a 

prescribed small number. Incorporating the solutions of 

MILP2, a classification score for each DMU can be 

computed using the following equation [10]: 

 

𝜌𝑗 = − ∑ 𝑣𝑖
∗

𝑚

𝑖=1

𝑥𝑖𝑗 + ∑ 𝑢𝑟
∗

𝑠

𝑟=1

𝑦𝑟𝑗 + 𝜎∗, 𝑗 = 1, . . . , 𝑛.       (18) 

 

The adjusted efficiency scores of all the DMUs can be 

computed using the classification scores obtained from 

(18). The DMU with an adjusted efficiency score of 1 

(full efficiency) is regarded as the single efficient DMU 

[10]. All other DMUs have some level of inefficiency, 

and the DMU with an adjusted efficiency score of 0 is 

fully inefficient.  

According to [10], MILP2 can be used to produce a 

single efficient DMU and to rank all of the DMUs. 

However, as MILP2 may have multiple optimal solutions, 

the single efficient DMU and the ranking of the DMUs 

may vary depending on which optimal solution is used to 

compute the classification scores. It is also well known 

that MILP DA models commonly have multiple optimal 

solutions. The following numerical example demonstrates 

that multiple optimal solutions exist in MILP2.  

The data set listed in Table I below comprises five 

DMUs, each with two inputs and one output. Only DMU1 

and DMU2 are inefficient; the rest are efficient.  

With M = 1000 and ɛ = 0.001, the data in Table I 

yields three optimal solutions for MILP2. All of the 

solutions have the same objective value, and their input 

and output weights are listed in Table II.   

The adjusted efficiency scores of the five DMUs for 

each of the three optimal solutions are computed and 

listed in Table III. As shown in Table III, each of the 
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three optimal solutions identifies a different DMU as the 

single efficient DMU, and generates different ranks for 

the DMUs.  

TABLE I.  DATA OF THE NUMERICAL EXAMPLE 

 DMU1 DMU2 DMU3 DMU4 DMU5 

Input 1 6 7 9 5 2 

Input 2 9 7 1 3 9 

Output 1 1 1 1 1 

 IE IE E E E 

 

TABLE II.  WEIGHTS AND OPTIMAL OBJECTIVE VALUES 

Optimal  

Solution 

Input 1 

(v1) 

Input 2  

(v2) 

Output  

(u1) 

σ φa 

1 0.03589 0.08923 0.87488 0 0 

2 0.001 0.001 0.998 -0.987 0 

3 0.00203 0.001 0.99697 -0.97677 0 

a Optimal objective value 

 

TABLE III.  ADJUSTED EFFICIENCY SCORES FOR THE FIVE DMUS 

Optimal  

Solution 

DMU1 DMU2 DMU3 DMU4 DMU5 

1 0 0.23520 1 0.94244 0.23689 

2 0 0.14286 0.71429 1 0.57143 

3 0.00404 0 0.23687 0.98788 1 

 

The adjusted efficiency scores of the five DMUs for 

each of the three optimal solutions are computed and 

listed in Table III. As shown in Table III, each of the 

three optimal solutions identifies a different DMU as the 

single efficient DMU, and generates different ranks for 

the DMUs.  

The objective function of both MILP1 and MILP2 is to 

minimize the number of DMUs misclassified as either 

efficient or inefficient. MILP2 differs slightly from 

MILP1 in placing a larger penalty on misclassified 

DMUs in the “efficient” group than in the “inefficient” 

group. However, the most significant difference between 

MILP1 and MILP2 is that MILP2 uses a common set of 

weights to generate a supporting hyperplane for all of the 

DMUs, whereas MILP1 develops a supporting 

hyperplane for each efficient DMU. MILP1 is similar to 

the super-efficiency model in that the DMU under 

evaluation is always the most efficient, whereas this 

condition is not required by MILP2. However, as 

mentioned previously, MILP2 may have multiple optimal 

solutions. In such a case, before MILP2 can be used to 

identify the best DMU or to rank the DMUs, one optimal 

solution must be chosen to compute the classification 

scores for the DMUs. In the next section, an approach to 

tackling this problem is outlined.  

III. A MODIFIED FORMULATION 

When multiple optimal solutions exist for MILP2, 

researchers need to decide which optimal solution should 

be used to compute the classification scores for the 

DMUs. To identify the most suitable solution to compute 

the classification scores of the DMUs, the following 

modified formulation (MILP3) is proposed:  

 

Min    𝑀 ∑ 𝑧𝑗

𝑗∈𝐸

+ ∑ 𝑧𝑗

𝑗∈𝐼𝐸

+ 𝜀 ∑(𝑑𝑗
+ + 𝑑𝑗

−)

𝑛

𝑗=1

                 (19) 

s. t.  − ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

+ ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

+ 𝜎 + 𝑀𝑧𝑗 ≥ 0, 𝑗 ∈ 𝐸, (20) 

 

− ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

+ ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

+ 𝜎 − 𝑀𝑧𝑗 ≤ −𝜀, 𝑗 ∈ 𝐼𝐸,       (21) 

 

∑ 𝑣𝑖

𝑚

𝑖=1

+ ∑ 𝑢𝑟

𝑠

𝑟=1

= 1,                                                        (22) 

 

∑ 𝑣𝑖

𝑚

𝑖=1

(𝑥𝑖𝑗 − 𝑥𝑖
𝐸) + ∑ 𝑢𝑟

𝑠

𝑟=1

(𝑦𝑟𝑗 − 𝑦𝑟
𝐸) − 𝑑𝑗

+ + 𝑑𝑗
− = 0,

𝑗 ∈ 𝐸,                                                     (23) 

∑ 𝑣𝑖

𝑚

𝑖=1

(𝑥𝑖𝑗 − 𝑥𝑖
𝐼𝐸) + ∑ 𝑢𝑟

𝑠

𝑟=1

(𝑦𝑟𝑗 − 𝑦𝑟
𝐼𝐸) − 𝑑𝑗

+ + 𝑑𝑗
− = 0,

𝑗 ∈ 𝐼𝐸,                                                   (24) 

𝑣𝑖 ≥ 𝜀𝜁𝑖 , 𝑖 = 1, . . . , 𝑚,                                                      (25) 

𝑢𝑟 ≥ 𝜀𝜁𝑖 , 𝑟 = 1, . . . , 𝑠,                                                      (26) 

 ∑ 𝜁𝑖

𝑚

𝑖=1

= 𝑚,                                                                         (27) 

∑ 𝜁𝑖

𝑚

𝑖=1

= 𝑠,                                                                           (28) 

𝜎 ∶ 𝑈𝑅𝑆, 𝑣𝑖 ≥ 0, ∀𝑖, 𝑤𝑟 ≥ 0, ∀𝑟, 𝑑𝑗
+, 𝑑𝑗

− ≥ 0, ∀𝑗,
 

 𝑧𝑗: binary ∀𝑗;  𝜁𝑖 : binary ∀𝑖;  𝜁𝑟: binary ∀𝑟.
 

 

In MILP3, 𝑥𝑖
𝑔

 and 𝑦𝑟
𝑔

 are the average scores of the ith 

input and rth output of group g, respectively, where 𝑔 ∈
{𝐸, 𝐼𝐸}. As the average classification score of group g 

is  ∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖

𝑔
+ ∑ 𝑢𝑟𝑦𝑟

𝑔
+ 𝜎𝑠

𝑟=1 , the variables 𝑑𝑗
+ and 𝑑𝑗

− 

measure the deviation of the classification score of the jth 

DMU from its group’s mean classification score. The 

third goal of MILP3 is to minimize the sum of the 

resulting deviations. The justification for minimizing 
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𝑑𝑗
+ and 𝑑𝑗

− is that the classification scores of members of 

the same group should be more similar to each other than 

to the scores of members of other groups. The objective 

of minimizing the sum of the deviations of individual 

classification scores from group mean classification 

scores was first introduced by [23] in DA. 

In practice, MILP3 can also be regarded as a 

preemptive goal programming model wherein goal 1 is to 

minimize ∑ 𝑧𝑗𝑗∈𝐸 , goal 2 is to minimize ∑ 𝑧𝑗𝑗∈𝐼𝐸 , and goal 

3 is to minimize ∑ (𝑑𝑗
+ + 𝑑𝑗

−)𝑛
𝑗=1 . Applying MILP3 to the 

data in Table I with M = 1000 and ɛ = 0.001 gives the 

second optimal solution listed in Table II.  

An advantage of MILP3 over MILP2 is that compared 

with the multiple solutions of MILP2, the single solution 

of MILP3 better separates the classification scores of the 

efficient DMUs from those of the inefficient DMUs. In 

addition, no prior information, such as past knowledge or 

managerial restrictions, is required to introduce additional 

constraints and goals to MILP3. Furthermore, unlike 

MILP1, which solves one MILP problem for each 

efficient DMU, MILP3 requires only one MILP problem 

to be solved.  

IV. CONCLUSION 

This paper discusses some of the drawbacks of 

applying two existing DEA-DA models to rank DMUs 

and determine the most efficient DMU. Among the main 

disadvantages of using one of these DEA-DA models to 

determine the most efficient DMU is that multiple 

solutions for the model exist. Consequently, the most 

efficient DMU identified will depend on which optimal 

solution is used. This paper introduces a modified model 

to solve the problem of multiple solutions. The modified 

model has a new goal, based on the assumption of cluster 

analysis that objects belonging to the same group should 

be more similar to each other than to objects from other 

groups. Accordingly, individual classification scores must 

be closer to their group’s mean classification score than 

to the mean classification score of another group. With 

this new goal, the modified model selects the solution in 

which members of the same group, whether efficient or 

inefficient, are most tightly clustered. This has a tendency 

to increase the discriminant power to separate the 

members of the two groups.  
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